Division of Facilities Construction and Management # MULTI-STEP BIDDING PROCESS FOR CONTRACTORS # **Request For Solicitation For Construction Services** **Stage II – General Contractors Bidders List FY09** September 2, 2008 # OMS ADDITION WEST JORDAN ARMORY # UTAH NATIONAL GUARD WEST JORDAN, UTAH DFCM Project No. 08031480 Cooper Roberts Simonsen Architects 700 North 200 West Salt Lake City, Utah 84103 # TABLE OF CONTENTS | | Page # | |--|--------| | Title Sheet | 1 | | Table of Contents | 2 | | Invitation to Bid | 3 | | Stage II – Multi-Step Bidding Process | 4 | | Stage II - Project Schedule | 8 | | Bid Form | 9 | | Bid Bond | 11 | | Instructions and Subcontractors List Form | 12 | | Contractor's Agreement | 15 | | Performance Bond | 20 | | Payment Bond | 21 | | Certificate of Substantial Completion | 22 | | General Contractor Performance Rating Form | | Current copies of the following documents are hereby made part of these contract documents by reference. These documents are available on the DFCM web site at http://dfcm.utah.gov or are available upon request from DFCM: DFCM Supplemental General Conditions dated July 15, 2008 DFCM General Conditions dated May 25, 2005 DFCM Application and Certificate for Payment dated May 25, 2005 Technical Specifications: Drawings: The Agreement and General Conditions dated May 25, 2005 have been updated from versions that were formally adopted and in use prior to this date. The changes made to the General Conditions are identified in a document entitled Revisions to General Conditions that is available on DFCM's web site at http://dfcm.utah.gov # **INVITATION TO BID** ONLY FIRMS PRE-QUALIFIED DURING STAGE I OF THE RFS ARE ALLOWED TO BID ON THIS PROJECT The State of Utah - Division of Facilities Construction and Management (DFCM) is requesting bids for the construction of the following project: OMS ADDITION - WEST JORDAN ARMORY UTAH NATIONAL GUARD - WEST JORDAN, UTAH DFCM PROJECT NO: 08031480 Project Description: This project is for an addition to an existing metal building which is a vehicle maintenance facility. Immediately after award of contract, the selected metal building manufacturer will be required to submit complete shop drawings and structural calculations to the architect for plan review by the building official. This should be conveyed to all metal building manufacturers when soliciting bids for the project. No construction will be permitted until the metal building has been approved by the building official. Construction Cost Estimate: \$650,000.00 | Company | Contact | Fax | Company | Contact | Fax | |-------------------------------|------------------|----------------|----------------------------------|------------------|----------------| | Arnell-West, Inc | Jason Arnell | (801) 975-9967 | Hidden Peak Electric Co | Derek Lee | (801) 262-5689 | | Ascent Construction | Brad L. Knowlton | (801) 299-0663 | Hughes General Contr | Dan Pratt | (801) 295-0530 | | Bailey Construction Co | Tracy Bailey | (435) 245-6413 | Interior Construction Specialist | Steve Bowers | (801) 568-1490 | | Benstog Construction Corp | Patrick Benstog | (801) 399-1335 | JC Construction | John Cecala | (801) 262-7966 | | Big-D Construction | Ryan Carter | (801) 415-6900 | Keller Construction | S. Daniel Hill | (801) 972-1063 | | Bradley Construction | Brad Piggott | (801) 298-6308 | McCullough Engineering | Jim McCullough | (801) 466-4989 | | Broderick & Henderson | Gary Broderick | (801) 225-4697 | Menlove Construction | Mike Menlove | (801) 282-6887 | | Bud Mahas Construction | Steve Mahas | (801) 531-0314 | MW Construction Inc | Bill Shuldverg | (435) 245-4660 | | CECI | Brian E. Bagnell | (801) 484-4040 | Onyx Construction | Mike Phillips | (801) 878-8922 | | Chad Husband Const | Richard Marshall | (801) 886-1784 | Rueckert Construction Co | Ken M. Rueckert | (801) 253-1774 | | CSM Construction Inc | Dan Noorda | (801) 280-2813 | Spindler Construction Corp | Gary R. Stevens | (435) 753-0728 | | Darrell Anderson Const | James Anderson | (435) 752-7606 | Velocity Construction | J. Scott Wilson | (435) 586-4968 | | Entelen Design-Build LLC | Steven R. Burt | (801) 517-4398 | Veritas Inc | Dan A. Parkinson | (801) 572-5899 | | Garff Construction | Phil Henricksen | (801) 972-1928 | Wade Payne Const | Wade Payne | (801) 226-7772 | The bid documents will be available at 2:00 PM on Tuesday, September 2, 2008 in electronic format only on CDs from DFCM at 4110 State Office Building, Salt Lake City, Utah 84114, telephone (801)538-3018 and on the DFCM web page at http://dfcm.utah.gov. For questions regarding this project, please contact Wayne Smith, Project Manager, DFCM, at (801) 550-6536. No others are to be contacted regarding this project. A MANDATORY pre-bid meeting and site visit will be held at 9:00 AM on Thursday, September 4, 2008 at the West Jordan National Guard Armory, 7602 South 4470 West (Airport Road), West Jordan, Utah 84084. All prequalified prime contractors wishing to bid on this project must attend this meeting. Bids must be submitted by 3:00 PM on Tuesday, September 16, 2008 to DFCM, 4110 State Office Building, Salt Lake City, Utah 84114. Bids will be opened and read aloud in the DFCM Conference Room, 4110 State Office Building, Salt Lake City, Utah. Note: Bids must be received at 4110 State Office Building by the specified time. The contractor shall comply with and require all of its subcontractors to comply with the license laws as required by the State of Utah. A bid bond in the amount of five percent (5%) of the bid amount, made payable to the Division of Facilities Construction and Management on DFCM's bid bond form, shall accompany the bid. The Division of Facilities Construction & Management reserves the right to reject any or all bids or to waive any formality or technicality in any bid in the interest of the State. DIVISION OF FACILITIES CONSTRUCTION AND MANAGEMENT MARLA WORKMAN, CONTRACT COORDINATOR 4110 State Office Bldg., Salt Lake City, Utah 84114 DFCM Form 7a 071508 # STAGE II - MULTI-STEP BIDDING PROCESS ONLY FIRMS PRE-QUALIFIED DURING STAGE I OF THE RFS ARE ALLOWED TO BID ON THIS PROJECT # 1. Invitational Bid Procedures The following is an overview of the invitational bid process. More detailed information is contained throughout the document. Contractors are responsible for reading and complying with all information contained in this document. <u>Notification:</u> DFCM will notify each registered pre-qualified firm (via fax or e-mail) when a project is ready for Construction Services and invite them to bid on the project. <u>Description of Work:</u> A description of work or plans/specifications will be given to each contractor. If required, the plans and specifications will be available on the DFCM web page at http://dfcm.utah.gov and on CDs from DFCM, at 4110 State Office Building, Salt Lake City, Utah 84114. <u>Schedule:</u> The Stage II Schedule shows critical dates including the mandatory pre-bid site meeting (if required), the question and answer period, the bid submittal deadline, the subcontractor list submittal deadline, etc. Contractors are responsible for meeting all deadlines shown on the schedule. <u>Mandatory Pre-Bid Site Meeting:</u> If a firm fails to attend a pre-bid site meeting labeled "Mandatory" they will not be allowed to bid on the project. At the mandatory meeting, contractors may have an opportunity to inspect the site, receive additional instructions and ask questions about project. The schedule contains information on the date, time, and place of the mandatory pre-bid site meeting. <u>Written Questions:</u> All questions must be in writing and directed to DFCM's project manager assigned to this project. No others are to be contacted regarding this project. The schedule contains information on the deadline for submitting questions. Addendum: All clarifications from DFCM will be in writing and issued as an addendum to the RFS. Addenda will be posted on DFCM's web site at http://dfcm.utah.gov. Contractors are responsible for obtaining information contained in each addendum from the web site. Addenda issued prior to the submittal deadline shall become part of the bidding process and must be acknowledged on the bid form. Failure to acknowledge addenda may result in disqualification from bidding. <u>Submitting Bids:</u> Bids must be submitted to DFCM 4110 State Office Building, Salt Lake City, Utah 84114 by the deadline indicated on the schedule. Bids submitted after the deadline will not be accepted. Bids will be opened at DFCM on the date, time, and place indicated on the schedule. <u>Subcontractors List:</u> The firm selected for the project must submit a list of all subcontractors by the deadline indicated on the schedule contained in this document. <u>Pre-qualified List of Contractors:</u> Contractors shall remain on DFCM's list of pre-qualified contractors provided: (a) they maintain a performance rating of 3.5 or greater on each project, (b) they are not suspended for failure to comply with requirements of their contract, (c) the firm has not undergone a significant reorganization involving the loss of key personnel (site superintendents, project managers, owners, etc.) to a degree such that the firm no longer meets the pre-qualification requirements outlined in Stage I, (d) the financial viability of the firm has not significantly changed, and (e) the firm is not otherwise disqualified by DFCM. Note: If a contractor fails to comply with items (a) through (e) above, they may be removed from DFCM's list of pre-qualified contractors following an evaluation by a review committee. Contractors will be given the opportunity to address the review committee before a decision is made. Pre-qualified contractors are
ONLY authorized to bid on projects within the discipline that they were originally pre-qualified under. # 2. Drawings and Specifications and Interpretations Drawings, specifications and other contract documents may be obtained as stated in the Invitation to Bid. If any firm is in doubt as to the meaning or interpretation of any part of the drawings, specifications, scope of work or contract documents, they shall submit, in writing, a request for interpretation to the authorized DFCM representative by the deadline identified in the schedule. Answers to questions and interpretations will be made via addenda issued by DFCM. Neither DFCM or the designer shall be responsible for incorrect information obtained by contractors from sources other than the official drawings/specifications and addenda issued by DFCM. ## 3. Product Approvals Where reference is made to one or more proprietary products in the contract documents, but restrictive descriptive materials of one or more manufacturer(s) is referred to in the contract documents, the products of other manufacturers will be accepted, provided they equal or exceed the standards set forth in the drawings and specifications and are compatible with the intent and purpose of the design, subject to the written approval of the Designer. Such written approval must occur prior to the deadline established for the last scheduled addendum to be issued. The Designer's written approval will be included as part of the addendum issued by DFCM. If the descriptive material is not restrictive, the products of other manufacturers specified will be accepted without prior approval provided they are compatible with the intent and purpose of the design as determined by the Designer. # 4. Addenda All clarifications from DFCM will be in writing and issued as an addendum to the RFS. Addenda will be posted on DFCM's web site at http://dfcm.utah.gov. Contractors are responsible for obtaining information contained in each addendum from the web site. Addenda issued prior to the submittal deadline shall become part of the bidding process and must be acknowledged on the bid form. Failure to acknowledge addenda shall result in disqualification from bidding. DFCM shall not be responsible for incorrect information obtained by contractors from sources other than official addenda issued by DFCM. # 5. Financial Responsibility of Contractors, Subcontractors and Sub-subcontractors Contractors shall respond promptly to any inquiry in writing by DFCM to any concern of financial responsibility of the Contractor, Subcontractor or Sub-subcontractor. Failure to respond may result in suspension from DFCM's list of pre-qualified contractors. ## 6. Licensure The Contractor shall comply with and require all of its Subcontractors to comply with the license laws as required by the State of Utah. Multi-Step Bidding Process Stage II Page No. 3 # 7. Permits In concurrence with the requirements for permitting in the general conditions, it is the responsibility of the contractor to obtain the fugitive dust plan requirements from the Utah Division of Air Quality and the SWPPP requirements from the Utah Department of Environmental Quality and submit the completed forms and pay any permit fee that may be required for this specific project. Failure to obtain the required permit may result in work stoppage and/or fines from the regulating authority that will be the sole responsibility of the contractor. Any delay to the project as a result of any such failure to obtain the permit or noncompliance with the permit shall not be eligible for any extension in the Contract Time. # 8. <u>Time is of the Essence</u> Time is of the essence in regard to all the requirements of the contract documents. # 9. <u>Bids</u> Before submitting a bid, each bidder shall carefully examine the contract documents; shall visit the site of the work; shall fully inform themselves as to all existing conditions and limitations; and shall include in the bid the cost of all items required by the contract documents including those added via addenda. If the bidder observes that portions of the contract documents are at variance with applicable laws, building codes, rules, regulations or contain obvious erroneous or uncoordinated information, the bidder shall promptly notify the DFCM Project Manager prior to the bidding deadline. Changes necessary to correct these issues will be made via addenda issued by DFCM. The bid, bearing original signatures, must be typed or handwritten in ink on the Bid Form provided in the procurement documents and submitted in a sealed envelope at the location specified by the Invitation to Bid prior to the published deadline for the submission of bids. Bid bond security, in the amount of five percent (5%) of the bid, made payable to the Division of Facilities Construction and Management, shall accompany bid. THE BID BOND MUST BE ON THE BID BOND FORM PROVIDED IN THE PROCUREMENT DOCUMENTS IN ORDER TO BE CONSIDERED AN ACCEPTABLE BID. If the bid bond security is submitted on a form other than DFCM's required bid bond form, and the bid security meets all other legal requirements, the bidder will be allowed to provide an acceptable bid bond by the close of business on the next business day following notification by DFCM of submission of a defective bid bond security. A cashier's check cannot be used as a substitute for a bid bond. # 10. Listing of Subcontractors Listing of Subcontractors shall be as summarized in the "Instructions and Subcontractor's List Form", included as part of the contract documents. The subcontractors list shall be delivered to DFCM or faxed to DFCM at (801) 538-3677 within 24 hours of the bid opening. Requirements for listing additional subcontractors will be listed in the contract documents. DFCM retains the right to audit or take other steps necessary to confirm compliance with requirements for the listing and changing of subcontractors. Any contractor who is found to not be in compliance with these requirements may be suspended from DFCM's list of pre-qualified contractors. # 11. Contract and Bond The Contractor's Agreement will be in the form provided in this document. The duration of the contract shall be for the time indicated by the project completion deadline shown on the schedule. The successful bidder, simultaneously with the execution of the Contractor's Agreement, will be required to furnish a performance bond and a payment bond, both bearing original signatures, upon the forms provided in the procurement documents. The performance and payment bonds shall be for an amount equal to one hundred percent (100%) of the Contract Sum and secured from a company that meets the requirements specified in the requisite forms. Any bonding requirements for Subcontractors will be specified in the Supplementary General Conditions. # 12. Award of Contract The Contract will be awarded as soon as possible to the lowest, responsive and responsible bidder, based on the lowest combination of base bid and acceptable prioritized alternates, provided the bid is reasonable, is in the interests of DFCM to accept and after applying the Utah Preference Laws in U.C.A. Title 63, Chapter 56. DFCM reserves the right to waive any technicalities or formalities in any bid or in the bidding. Alternates will be accepted on a prioritized basis with Alternate 1 being highest priority, Alternate 2 having second priority, etc. Alternates will be selected in prioritized order up to the construction cost estimate. # 13. Right to Reject Bids DFCM reserves the right to reject any or all Bids. ## 14. Withdrawal of Bids Bids may be withdrawn on written request received from bidders within 24 hours after the bid opening if the contractor has made an error in preparing the bid. # 15. DFCM Contractor Performance Rating As a contractor completes each project, DFCM will evaluate project performance based on the enclosed "DFCM Contractor Performance Rating" form. The ratings issued on this project may affect the firm's "pre-qualified" status and their ability to obtain future work with DFCM. # **Division of Facilities Construction and Management** **DFCM** # Stage II PROJECT SCHEDULE PROJECT NAME: OMS ADDITION - WEST JORDAN ARMORY UTAH NATIONAL GUARD - WEST JORDAN, UTAH DFCM PROJECT #: 08031480 | Event | Day | Date | Time | Place | |--|-----------|--------------------|---------|---| | Stage II Bidding
Documents Available | Tuesday | September 2, 2008 | 2:00 PM | DFCM
4110 State Office Building
SLC, UT and the DFCM web site* | | Mandatory Pre-bid Site
Meeting | Thursday | September 4, 2008 | 9:00 AM | West Jordan Natl Guard Armory
7602 South 4470 West (Airport Rd)
West Jordan, UT
(Bldg west side of road) | | Deadline for Submitting
Questions | Tuesday | September 9, 2008 | 5:00 PM | Wayne Smith – DFCM
E-mail wfsmith@utah.gov
Fax (801)-538-3267 | | Addendum Deadline (exception for bid delays) | Thursday | September 11, 2008 | 2:00 PM | DFCM web site* | | Prime Contractors Turn in Bid and Bid Bond | Tuesday | September 16, 2008 | 3:00 PM | DFCM
4110 State Office Building
SLC, UT | | Subcontractors List Due | Wednesday | September17, 2008 | 3:00 PM | DFCM
4110 State Office Building
SLC, UT
Fax 801-538-3677 | | Substantial Completion
Date | Friday | January 30, 2009 | | | ^{*} NOTE: DFCM's web site address is http://dfcm.utah.gov # **Division of Facilities Construction and Management** **DFCM** # **BID FORM** | NAME OF BIDDER | DATE | |
--|-----------------------------------|--------------------| | | | | | To the Division of Facilities Construction and Management | | | | 4110 State Office Building | | | | Salt Lake City, Utah 84114 | | | | The undersigned, responsive to the "Invitation to Bid" and in acco | ordance with the Request for Bids | for the OMS | | ADDITION - WEST JORDAN ARMORY - UTAH NATION | | | | DFCM PROJECT NO: 08031480 and having examined the Co | | | | Work and being familiar with all of the conditions surrounding the the availability of labor, hereby proposes to furnish all labor, materials and the surrounding surround | * * | <i>3</i> . | | accordance with the Contract Documents as specified and within | | | | This price is to cover all expenses incurred in performing the Wor | | | | which this bid is a part: | | | | I/We acknowledge receipt of the following Addenda: | | | | | | | | For all work shown on the Drawings and described in the Specific perform for the sum of: | cations and Contract Documents, | I/we agree to | | perform for the sum of. | | | | | DOLLARS (\$ |) | | (In case of discrepancy, written amount shall govern) | | | | | | | | I/We guarantee that the Work will be Substantially Complete by J | | | | bidder, and agree to pay liquidated damages in the amount of \$ 40 | | xpiration of the | | Contract Time as stated in Article 3 of the Contractor's Agreement | ıı. | | | This bid shall be good for 45 days after bid opening. | | | | Enclosed is a 5% bid bond, as required, in the sum of | | | | The undersigned Contractor's License Number for Utah is | • | | | | | | # BID FORM PAGE NO. 2 Upon receipt of notice of award of this bid, the undersigned agrees to execute the contract within ten (10) days, unless a shorter time is specified in Contract Documents, and deliver acceptable Performance and Payment bonds in the prescribed form in the amount of 100% of the Contract Sum for faithful performance of the contract. The Bid Bond attached, in the amount not less than five percent (5%) of the above bid sum, shall become the property of the Division of Facilities Construction and Management as liquidated damages for delay and additional expense caused thereby in the event that the contract is not executed and/or acceptable 100% Performance and Payment bonds are not delivered within time set forth. | Type of Organization: | | | |------------------------|----------------------------|-------------------------| | | (Corporation, Partnersh | nip, Individual, etc.) | | Any request and inform | nation related to Utah Pro | eference Laws: | | | | Respectfully submitted, | | | | Name of Bidder | | | | ADDRESS: | | | | | | | | | | | | Authorized Signature | **BID BOND** (Title 63, Chapter 56, U. C. A. 1953, as Amended) # KNOW ALL PERSONS BY THESE PRESENTS: | That | hereinafter referred to as the | |---|--| | "Principal," and, with its principal office in this State and U. S. Department of the Treasury Listed, (Circular 570, Com | , a corporation organized and existing under | | the laws of the State of, with its principal office in | the City of and authorized to transact business in | | Federal Bonds and as Acceptable Reinsuring Companies); hereinafter refer | red to as the "Surety." are held and firmly bound unto the STATE OF | | UTAH, hereinafter referred to as the "Obligee," in the amount of \$ | (5% of the accompanying bid), being | | UTAH, hereinafter referred to as the "Obligee," in the amount of \$ the sum of this Bond to which payment the Principal and Surety bind them | selves, their heirs, executors, administrators, successors and assigns, | | jointly and severally, firmly by these presents. | | | THE CONDITION OF THIS OBLIGATION IS SUCH that vincorporated by reference herein, dated as shown, to enter into a contract | whereas the Principal has submitted to Obligee the accompanying bid in writing for the | | | | | | | | | OBLIGATION IS SUCH , that if the said principal does not execute | | a contract and give bond to be approved by the Obligee for the faithful per
of such contract to the principal, then the sum of the amount stated above v | vill be forfeited to the State of Utah as liquidated damages and not as | | a penalty; if the said principal shall execute a contract and give bond to be | approved by the Obligee for the faithful performance thereof within | | ten (10) days after being notified in writing of such contract to the Prin | ncipal, then this obligation shall be null and void. It is expressly | | understood and agreed that the liability of the Surety for any and all defaul | | | The Surety, for value received, hereby stipulates and agrees that obligation from actual date of the bid opening. | ns of the Surety under this Bond shall be for a term of sixty (60) days | | from actual date of the old opening. | | | PROVIDED, HOWEVER, that this Bond is executed pursuant | to provisions of Title 63, Chapter 56, Utah Code Annotated, 1953, as | | amended, and all liabilities on this Bond shall be determined in accordance | ce with said provisions to same extent as if it were copied at length | | herein. | | | IN WITNESS WHEREOF the above bounden parties have ex | ecuted this instrument under their several seals on the date indicated | | below, the name and corporate seal of each corporate party being hereto affi | ixed and these presents duly signed by its undersigned representative, | | pursuant to authority of its governing body. | , , , , , , , , , , , , , , , , , , , | | | | | DATED this day of, 20 | · | | Principal's name and address (if other than a corporation): | Principal's name and address (if a corporation): | | 1 1 morphi 8 mine una addites (il comor mine a corporation) | 11 | | | | | | | | | | | By: | Ву: | | T. 1 | Title:(Affix Corporate Seal) | | Title: | 11tte:(Affix Corporate Seal) | | | (Allix Corporate Scar) | | | Surety's name and address: | | | • | | | | | | | | STATE OF) | | |) ss. | By: | | COUNTY OF | Attorney-in-Fact (Affix Corporate Seal) | | On this day of 20 personally appear | rad hafora ma | | On this day of, 20, personally appear whose identity is personally known to me or proved to me on the basis of s | atisfactory evidence, and who, being by me duly sworn, did say that | | he/she is the Attorney-in-fact of the above-named Surety Company, and the | at he/she is duly authorized to execute the same and has complied in | | all respects with the laws of Utah in reference to becoming sole surety upon | n bonds, undertakings and obligations, and that he/she acknowledged | | to me that as Attorney-in-fact executed the same. | | | Subscribed and sworn to before me this day of | 20 | | My Commission Expires: | , 20 | | Resides at: | | | | | | | NOTADY DUDI IC | | | NOTARY PUBLIC | | Agent: | NOTARY PUBLIC | | Agency: Agent: Address: | Approved As To Form: May 25, 2005 | # **Division of Facilities Construction and Management** **DFCM** # INSTRUCTION AND SUBCONTRACTORS LIST FORM The three low bidders, as well as all other bidders that desire to be considered, are required by law to submit to DFCM within 24 hours of bid opening a list of <u>ALL</u> first-tier subcontractors, including the subcontractor's name, bid amount and other information required by Building Board Rule and as stated in these Contract Documents, based on the following: # **DOLLAR AMOUNTS FOR LISTING** PROJECTS UNDER \$500,000: ALL FIRST-TIER SUBS \$20,000 OR OVER MUST BE LISTED PROJECTS \$500,000 OR MORE: ALL FIRST-TIER SUBS \$35,000 OR OVER MUST BE LISTED - Any additional subcontractors identified in the bid documents shall also be listed. - The DFCM Director may not consider any bid submitted by a bidder if the bidder fails to submit a
subcontractor list meeting the requirements of State law. - List subcontractors for base bid as well as the impact on the list that the selection of any alternate may have. - Bidder may not list more than one subcontractor to perform the same work. - If there are no subcontractors for the job that are required to be reported by State law (either because there are no subcontractors that will be used on the project or because there are no first-tier subcontractors over the dollar amounts referred to above), then you do not need to submit a sublist. If you do not submit a sublist, it will be deemed to be a representation by you that there are no subcontractors on the job that are required to be reported under State law. At any time, DFCM reserves the right to inquire, for security purposes, as to the identification of the subcontractors at any tier that will be on the worksite. # LICENSURE: The subcontractor's name, the type of work, the subcontractor's bid amount, and the subcontractor's license number as issued by DOPL, if such license is required under Utah Law, shall be listed. Bidder shall certify that all subcontractors, required to be licensed, are licensed as required by State law. A subcontractor includes a trade contractor or specialty contractor and does not include suppliers who provide <u>only</u> materials, equipment, or supplies to a contractor or subcontractor. ## **'SPECIAL EXCEPTION':** A bidder may list 'Special Exception' in place of a subcontractor when the bidder intends to obtain a subcontractor to perform the work at a later date because the bidder was unable to obtain a qualified or reasonable bid under the provisions of U.C.A.Section 63A-5-208(4). The bidder shall insert the term 'Special Exception' for that category of work, and shall provide documentation with the subcontractor list describing the bidder's efforts to obtain a bid of a qualified subcontractor at a reasonable cost and why the bidder was unable to obtain a qualified subcontractor bid. The Director must find that the bidder complied in good faith with State law requirements for any 'Special Exception' designation, in order for the bid to be considered. If awarded the contract, the Director shall supervise the bidder's efforts to obtain a qualified subcontractor bid. The amount of the awarded contract may not be adjusted to reflect the actual amount of the subcontractor's bid. Any listing of 'Special Exception' on the sublist form shall also include amount allocated for that work. # **GROUNDS FOR DISQUALIFICATION:** The Director may not consider any bid submitted by a bidder if the bidder fails to submit a subcontractor list meeting the requirements of State law. Director may withhold awarding the contract to a particular bidder if one or more of the proposed subcontractors are considered by the Director to be unqualified to do the Work or for such # INSTRUCTIONS AND SUBCONTRACTORS LIST FORM Page No. 2 other reason in the best interest of the State of Utah. Notwithstanding any other provision in these instructions, if there is a good faith error on the sublist form, at the sole discretion of the Director, the Director may provide notice to the contractor and the contractor shall have 24 hours to submit the correction to the Director. If such correction is submitted timely, then the sublist requirements shall be considered met. ## CHANGES OF SUBCONTRACTORS SPECIFICALLY IDENTIFIED ON SUBLIST FORM: Subsequent to twenty-four hours after the bid opening, the contractor may change its listed subcontractors only after receiving written permission from the Director based on complying with all of the following criteria. - (1) The contractor has established in writing that the change is in the best interest of the State and that the contractor establishes an appropriate reason for the change, which may include, but not is not limited to, the following reasons: the original subcontractor has failed to perform, or is not qualified or capable of performing, and/or the subcontractor has requested in writing to be released. - (2) The circumstances related to the request for the change do not indicate any bad faith in the original listing of the subcontractors. - (3) Any requirement set forth by the Director to ensure that the process used to select a new subcontractor does not give rise to bid shopping. - (4) Any increase in the cost of the subject subcontractor work is borne by the contractor. - (5) Any decrease in the cost of the subject subcontractor work shall result in a deductive change order being issued for the contract for such decreased amount. - (6) The Director will give substantial weight to whether the subcontractor has consented in writing to being removed unless the Contractor establishes that the subcontractor is not qualified for the work. # **EXAMPLE:** Example of a list where there are only four subcontractors: | TYPE OF WORK | SUBCONTRACTOR,
"SELF" OR "SPECIAL
EXCEPTION" | SUBCONTRACTOR
BID AMOUNT | CONTRACTOR
LICENSE # | |----------------------------|--|-----------------------------|--| | ELECTRICAL | ABCD Electric Inc. | \$350,000.00 | 123456789000 | | LANDSCAPING | "Self" * | \$300,000.00 | 123456789000 | | CONCRETE
(ALTERNATE #1) | XYZ Concrete Inc | \$298,000.00 | 987654321000 | | MECHANICAL | "Special Exception" (attach documentation) | Fixed at: \$350,000.00 | (TO BE PROVIDED
AFTER OBTAINING
SUBCONTRACTOR) | ^{*} Bidders may list "self", but it is not required. PURSUANT TO STATE LAW - SUBCONTRACTOR BID AMOUNTS CONTAINED IN THIS SUBCONTRACTOR LIST SHALL NOT BE DISCLOSED UNTIL THE CONTRACT HAS BEEN AWARDED. DDOIECT TITLE. # **Division of Facilities Construction and Management** **DFCM** # SUBCONTRACTORS LIST FAX TO 801-538-3677 | TYPE OF WORK | SUBCONTRACTOR, "SELF" OR "SPECIAL EXCEPTION" | SUBCONTRACTOR
BID AMOUNT | CONT. LICENSE | |--|--|-----------------------------|-------------------| | TITE OF WORK | SELF OR SIECIAL EACEI HON | DID ANIOUNI | CONT. LICENSE | well as any alternates.
We have listed "Self" or "S | tractors as required by the instructions, inc
pecial Exception" in accordance with the in
opriately licensed as required by State law. | nstructions. | o the base bid as | | | FIRM: | | | | E: | | | | 4110 State Office Building, Salt Lake City, Utah 84114 - telephone 801-538-3018 - facsimile 801-538-3677 - http://dfcm.utah.gov CONTRACT DOCUMENTS, SHALL BE GROUNDS FOR OWNER'S REFUSAL TO ENTER INTO A WRITTEN CONTRACT WITH BIDDER. ACTION MAY BE TAKEN AGAINST BIDDERS BID BOND AS DEEMED APPROPRIATE BY OWNER. ATTACH A SECOND PAGE IF NECESSARY. | 300/300/ | /FVA/ | /_ | /_ | _/_ | |----------|-----------|----|----|-----| | | Project 1 | No | | | # **CONTRACTOR'S AGREEMENT** | FOR: | |---| | | | THIS CONTRACTOR'S AGREEMENT, made and entered into this day of, 20, by and between the DIVISION OF FACILITIES CONSTRUCTION AND MANAGEMENT, hereinafter referred to as "DFCM", and, incorporated in the State of and authorized to do business in the State of Utah, hereinafter referred to as "Contractor", whose address is | | WITNESSETH: WHEREAS, DFCM intends to have Work performed at | | WHEREAS, Contractor agrees to perform the Work for the sum stated herein. | | NOW, THEREFORE, DFCM and Contractor for the consideration provided in this Contractor's Agreement, agree as follows: | | ARTICLE 1. SCOPE OF WORK. The Work to be performed shall be in accordance with the Contract Documents prepared by and entitled "" | | The DFCM General Conditions ("General Conditions") dated May 25, 2005 and Supplemental General Conditions dated July 15, 2008 ("also referred to as General Conditions") and on file at the office of DFCM and available on the DFCM website, are hereby incorporated by reference as part of this Agreement and are included in the specifications for this Project. All terms used in this Contractor's Agreement shall be as defined in the Contract Documents, and in particular, the General Conditions. | | The Contractor Agrees to furnish labor, materials and equipment to complete the Work as required in the Contract Documents which are hereby incorporated by reference. It is understood and agreed by the parties hereto that all Work shall be performed as required in the Contract Documents and shall be subject to inspection and approval of DFCM or its authorized representative. The relationship of the Contractor to the DFCM hereunder is that of an independent Contractor. | | ARTICLE 2. CONTRACT SUM. The DFCM agrees to pay and the Contractor agrees to accept in full performance of this Contractor's Agreement, the sum of | | is the base bid, and which sum also includes the cost of a 100% | # CONTRACTOR'S AGREEMENT PAGE NO. 2 Performance Bond and a 100% Payment Bond as well as all insurance requirements of the Contractor. Said bonds have already been posted by the Contractor pursuant to State law. The required proof of insurance certificates have been delivered to DFCM in accordance with the General Conditions before the execution of this Contractor's Agreement. |
ARTICLE 3. TIME OF COMPLETION AND | DELAY REMEDY. The Work shall be | |--|---| | Substantially Complete by Co | ontractor agrees to pay liquidated damages in the | | amount of \$ per day for each day after expira | tion of the Contract Time until the Contractor | | achieves Substantial Completion in accordance with | the Contract Documents, if Contractor's delay | | makes the damages applicable. The provision for liq | uidated damages is: (a) to compensate the DFCM | | for delay only; (b) is provided for herein because act | ual damages can not be readily ascertained at the | | time of execution of this Contractor's Agreement; (c) | is not a penalty; and (d) shall not prevent the | | DFCM from maintaining Claims for other non-delay | damages, such as costs to complete or remedy | | defective Work. | | No action shall be maintained by the Contractor, including its or Subcontractor or suppliers at any tier, against the DFCM or State of Utah for damages or other claims due to losses attributable to hindrances or delays from any cause whatsoever, including acts and omissions of the DFCM or its officers, employees or agents, except as expressly provided in the General Conditions. The Contractor may receive a written extension of time, signed by the DFCM, in which to complete the Work under this Contractor's Agreement in accordance with the General Conditions. **ARTICLE 4. CONTRACT DOCUMENTS.** The Contract Documents consist of this Contractor's Agreement, the Conditions of the Contract (DFCM General Conditions, Supplementary and other Conditions), the Drawings, Specifications, Addenda and Modifications. The Contract Documents shall also include the bidding documents, including the Notice to Contractors, Instructions to Bidders/Proposers and the Bid/Proposal, to the extent not in conflict therewith and other documents and oral presentations that are documented as an attachment to the contract. All such documents are hereby incorporated by reference herein. Any reference in this Contractor's Agreement to certain provisions of the Contract Documents shall in no way be construed as to lessen the importance or applicability of any other provisions of the Contract Documents. **ARTICLE 5. PAYMENT.** The DFCM agrees to pay the Contractor from time to time as the Work progresses, but not more than once each month after the date of Notice to Proceed, and only upon Certificate of the A/E for Work performed during the preceding calendar month, ninety-five percent (95%) of the value of the labor performed and ninety-five percent (95%) of the value of materials furnished in place or on the site. The Contractor agrees to furnish to the DFCM invoices for materials purchased and on the site but not installed, for which the Contractor requests payment and agrees to safeguard and protect such equipment or materials and is responsible for safekeeping thereof and if such be stolen, lost or destroyed, to replace same. # CONTRACTOR'S AGREEMENT PAGE NO. 3 Such evidence of labor performed and materials furnished as the DFCM may reasonably require shall be supplied by the Contractor at the time of request for Certificate of Payment on account. Materials for which payment has been made cannot be removed from the job site without DFCM's written approval. Five percent (5%) of the earned amount shall be retained from each monthly payment. The retainage, including any additional retainage imposed and the release of any retainage, shall be in accordance with UCA 13-8-5 as amended. Contractor shall also comply with the requirements of UCA 13-8-5, including restrictions of retainage regarding subcontractors and the distribution of interest earned on the retention proceeds. The DFCM shall not be responsible for enforcing the Contractor's obligations under State law in fulfilling the retention law requirements with subcontractors at any tier. **ARTICLE 6. INDEBTEDNESS.** Before final payment is made, the Contractor must submit evidence satisfactory to the DFCM that all payrolls, materials bills, subcontracts at any tier and outstanding indebtedness in connection with the Work have been properly paid. Final Payment will be made after receipt of said evidence, final acceptance of the Work by the DFCM as well as compliance with the applicable provisions of the General Conditions. Contractor shall respond immediately to any inquiry in writing by DFCM as to any concern of financial responsibility and DFCM reserves the right to request any waivers, releases or bonds from Contractor in regard to any rights of Subcontractors (including suppliers) at any tier or any third parties prior to any payment by DFCM to Contractor. **ARTICLE 7. ADDITIONAL WORK.** It is understood and agreed by the parties hereto that no money will be paid to the Contractor for additional labor or materials furnished unless a new contract in writing or a Modification hereof in accordance with the General Conditions and the Contract Documents for such additional labor or materials has been executed. The DFCM specifically reserves the right to modify or amend this Contractor's Agreement and the total sum due hereunder either by enlarging or restricting the scope of the Work. **ARTICLE 8. INSPECTIONS.** The Work shall be inspected for acceptance in accordance with the General Conditions. **ARTICLE 9. DISPUTES.** Any dispute, PRE or Claim between the parties shall be subject to the provisions of Article 7 of the General Conditions. DFCM reserves all rights to pursue its rights and remedies as provided in the General Conditions. **ARTICLE 10. TERMINATION, SUSPENSION OR ABANDONMENT.** This Contractor's Agreement may be terminated, suspended or abandoned in accordance with the General Conditions. # ARTICLE 11. DFCM'S RIGHT TO WITHHOLD CERTAIN AMOUNT AND MAKE USE **THEREOF.** The DFCM may withhold from payment to the Contractor such amount as, in DFCM's judgment, may be necessary to pay just claims against the Contractor or Subcontractor at any tier for labor and services rendered and materials furnished in and about the Work. The DFCM may apply such withheld amounts for the payment of such claims in DFCM's discretion. In so doing, the DFCM shall be deemed the agent of Contractor and payment so made by the DFCM shall be considered as payment made under this Contractor's Agreement by the DFCM to the Contractor. DFCM shall not be liable to the Contractor for any such payment made in good faith. Such withholdings and payments may be made without prior approval of the Contractor and may be also be prior to any determination as a result of any dispute, PRE, Claim or litigation. **ARTICLE 12. INDEMNIFICATION.** The Contractor shall comply with the indemnification provisions of the General Conditions. ARTICLE 13. SUCCESSORS AND ASSIGNMENT OF CONTRACT. The DFCM and Contractor, respectively bind themselves, their partners, successors, assigns and legal representatives to the other party to this Agreement, and to partners, successors, assigns and legal representatives of such other party with respect to all covenants, provisions, rights and responsibilities of this Contractor's Agreement. The Contractor shall not assign this Contractor's Agreement without the prior written consent of the DFCM, nor shall the Contractor assign any moneys due or to become due as well as any rights under this Contractor's Agreement, without prior written consent of the DFCM. **ARTICLE 14. RELATIONSHIP OF THE PARTIES.** The Contractor accepts the relationship of trust and confidence established by this Contractor's Agreement and covenants with the DFCM to cooperate with the DFCM and A/E and use the Contractor's best skill, efforts and judgment in furthering the interest of the DFCM; to furnish efficient business administration and supervision; to make best efforts to furnish at all times an adequate supply of workers and materials; and to perform the Work in the best and most expeditious and economic manner consistent with the interests of the DFCM. **ARTICLE 15. AUTHORITY TO EXECUTE AND PERFORM AGREEMENT.** Contractor and DFCM each represent that the execution of this Contractor's Agreement and the performance thereunder is within their respective duly authorized powers. **ARTICLE 16. ATTORNEY FEES AND COSTS.** Except as otherwise provided in the dispute resolution provisions of the General Conditions, the prevailing party shall be entitled to reasonable attorney fees and costs incurred in any action in the District Court and/or appellate body to enforce this Contractor's Agreement or recover damages or any other action as a result of a breach thereof. # CONTRACTOR'S AGREEMENT PAGE NO. 5 **IN WITNESS WHEREOF**, the parties hereto have executed this Contractor's Agreement on the day and year stated hereinabove. | | CONTRACTOR: | | |---|---|--------------------| | | Signature | Date | | | Title: | | | State of) | | | | County of) | Please type/print name clearly | | | On this day of, 20, pers whose identity is personally known to me (or who by me duly sworn (or affirmed), did say the firm and that said document was signed by | proved to me on the basis of satisfactor that he (she) is the | ry evidence) and | | (SEAL) | Notary Public | | | (SEAL) | My Commission Expires | | | APPROVED AS TO AVAILABILITY OF FUNDS: | DIVISION OF FACILITIES
CONSTRUCTION AND MAN | NAGEMENT | | David D. Williams, Jr. Date DFCM Administrative Services Director | Lynn A. Hinrichs
Assistant Director Construction | Date
Management | | APPROVED AS TO FORM:
ATTORNEY GENERAL
July 15, 2008 | APPROVED FOR EXPENDITU | JRE: | | By: Alan S. Bachman Asst Attorney General | Division of Finance | Date | # PERFORMANCE BOND
(Title 63, Chapter 56, U. C. A. 1953, as Amended) | That | h | eremafter referred to as t | the "Principal" and | |---|---|------------------------------|------------------------| | | | | | | , with its principal office in the City of and authorized | | | | | Listed (Circular 570, Companies Holding Certificates of Authority as Acceptable Sec | urities on Federal Bonds | and as Acceptable Reir | suring Companies); | | hereinafter referred to as the "Surety," are held and firmly bound unto the State of Utah | , hereinafter referred to as | the "Obligee, " in the an | nount of | | | DOLLARS (\$ |) for the p | ayment whereof, the | | said Principal and Surety bind themselves and their heirs, administrators, executors, such | ecessors and assigns, joint | ly and severally, firmly b | by these presents. | | WHERE AC 41. Deliver all has according to a section with a Contract with a | h - Ohliana data daha | 4£ | 20 4- | | WHEREAS, the Principal has entered into a certain written Contract with t | he Obligee, dated the | day of | , 20, to | | construct | C 4 | C | | | in the County of, State of Utah, Project No, | for the approximate sum | of | | | | | Dollars (\$ |), which | | Contract is hereby incorporated by reference herein. | | | | | | | | | | NOW, THEREFORE , the condition of this obligation is such that if the sai | - | • | | | Contract Documents including, but not limited to, the Plans, Specifications and condition | | | | | Contract as said Contract may be subject to Modifications or changes, then this obligati | on shall be void; otherwis | se it shall remain in full f | orce and effect. | | | | | | | No right of action shall accrue on this bond to or for the use of any person of | or corporation other than t | he state named herein or | the heirs, executors, | | administrators or successors of the Owner. | 1 | | | | | | | | | The parties agree that the dispute provisions provided in the Contract Docume | ents apply and shall consti | tute the sole dispute proc | edures of the parties. | | The parties agree that the dispute provisions provided in the contract 2 seams | ones uppry und sman consti | rate the sole dispute proc | edures of the parties. | | PROVIDED, HOWEVER, that this Bond is executed pursuant to the Provi | cione of Title 63 Chanter | 56 Utah Code Annotate | d 1053 as amandad | | and all liabilities on this Bond shall be determined in accordance with said provisions to | | | | | and an nabilities on this Bond shan be determined in accordance with said provisions to | the same extent as if it w | vere copied at length here | :III. | | IN WHENDERG WHEDEOE 4 | 1 | 1 | 20 | | IN WITNESS WHEREOF, the said Principal and Surety have signed and | sealed this instrument this | day of | , 20 | | | | | | | WITNESS OR ATTESTATION: | PRINCIPAL: | Ву: | | | | | | | (Seal) | | | Title: | | | | | | | | | | | | | | WITNESS OR ATTESTATION: | SURETY: | | | | | | | | | | | | | | | - | | | | | By: | | | | | Attorney-in-Fact | | (Seal) | | STATE OF | Attorney-in-ract | | (Seal) | | | | | | |) ss. | | | | | COUNTY OF | | | | | | | | | | On this $\underline{\hspace{1cm}}$ day of $\underline{\hspace{1cm}}$, $20\underline{\hspace{1cm}}$, personally appeared before me | | | | | identity is personally known to me or proved to me on the basis of satisfactory evidence | | | | | in-fact of the above-named Surety Company and that he/she is duly authorized to exec | tute the same and has com | plied in all respects with | the laws of Utah in | | reference to becoming sole surety upon bonds, undertakings and obligations, and that h | e/she acknowledged to me | e that as Attorney-in-fact | executed the same. | | | | | | | Subscribed and sworn to before me this day of | , 20 . | | | | · | | | | | My commission expires: | | | | | Resides at: | | | | | | NOTARY PUBLIC | | | | | MOTAKT TODLIC | | | | | | | | | Agency: | | | | | Agent: | | | | | Address: | | Approved As To For | m: May 25, 2005 | | Phone: | By A | lan S. Bachman. Asst | | DFCM Form 7b 071508 20 # PAYMENT BOND (Title 63, Chapter 56, U. C. A. 1953, as Amended) # KNOW ALL PERSONS BY THESE PRESENTS: | That | | | hereinafter referred to as | s the "Principal," and | | |---|-------------------------------|---------------------------|--|-----------------------------|--------------------------| | | , a corporation organized a | and existing under the | laws of the State of | authorized to d | o business in this State | | | | | ing Certificates of Authority as Ac | | | | | | | , hereinafter referred to | | | | | | | | | | | | | | and Surety bind themselves and the | ir heirs, administrators, e | xecutors, successors | | and assigns, jointly and seve | rally, firmly by these presen | its. | | | | | | | | act with the Obligee, dated the | | | | to construct | | | for the approximate sum of | | | | in the County of | , State of Utah, Pro | oject No | for the approximate sum of Dollars (\$ | of | | | incorporated by reference he | | | Dollars (\$ |), which | contract is nereby | | NOW. THEREF | ORE, the condition of this c | obligation is such that i | f the said Principal shall pay all clain | mants supplying labor or r | naterials to Principal | | | | - | pter 56, of Utah Code Annotated, 19 | | - | | • | | | ise it shall remain in full force and | | 1 | | TT 4 '10 4 4 | di Di lo il i | 11 1 2 1 | 1 4 1 | Cart In at | 1122 | | | | | nd agrees that no changes, extension | | | | | • | • | or drawings accompanying same sha | • • | • | | and does nereby waive notice
or drawings and agrees that t | | | ns or additions to the terms of the C | ontract or to the work or | to the specifications | | or drawings and agrees that t | ney shall become part of the | 5 Contract Documents. | • | | | | PROVIDED, HO | WEVER, that this Bond is | executed nursuant to th | ne provisions of Title 63, Chapter 56, | Utah Code Annotated 19 | 953, as amended, and | | | | • | ons to the same extent as if it were | | 55, us umenaca, una | | | | - | | | | | IN WITNESS W | HEREOF, the said Princip | al and Surety have sig | ened and sealed this instrument this | day of | , 20 | | WITNESS OD ATTESTAT | PION. | | DDINGIDAL. | | | | WITNESS OR ATTESTA | HON: | | PRINCIPAL: | | | | | | | | | | | | | _ | | | | | | | | Ву: | | | | | | | Title: | | (Seal) | | | | | | | | | WITNESS OR ATTESTA | ΓΙΟN: | | SURETY: | | | | | | | | | | | | | _ | | | | | | | | | | | | STATE OF | | | Attorney-in-Fact | | (Seal) | | COLDIENTOE |) ss. | | | | | | COUNTY OF |) | | | | | | On this | day of | 20 20 | ersonally appeared before me | | | | Oil tills | Jay 01 | | , whose identity is personally | | n me on the hasis of | | satisfactory evidence, and wh | no heing by me duly sworn | | he Attorney-in-fact of the above-na | | | | - | | • | vs of Utah in reference to becoming | | • | | obligations, and that he/she | - | | | ig sole surety upon cond | s, undertainings and | | , | Ü | • | | | | | Subscribed and sworn to bef | ore me this day of _ | | , 20 | | | | | | | | | | | My commission expires: | | | | | | | Resides at: | | | NOTARY PUBLIC | | | | | | | NOTART FUBLIC | | | | | | | — | | | | Agent: | | | — | | orm: May 25, 2005 | | Address: | | | — ∥ | By Alan S. Bachman, As | st Attorney General | DFCM Form 7b 071508 21 # Division of Facilities Construction and Management **DFCM** # CERTIFICATE OF SUBSTANTIAL COMPLETION | PROJECT | | PROJECT N | łO: | |--|---|---|---| | AGENCY/INSTITUTION | | | | | AREA ACCEPTED | | | | | The Work performed under the subject Condefined in the General Conditions; including Documents, as modified by any change order area of the Project for the use for which it is | g that the c
s agreed to l | construction is sufficiently comp | pleted in accordance with the Contract | | The DFCM - (Owner) accepts the Project possession of the Project or specified area of | | | | | The DFCM accepts the Project for occupancy utilities and insurance, of the Project subject | | | | | | | | | | The Owner acknowledges receipt of the followard Drawings O & M Ma | | eout and transition materials: Warranty Documents | Completion of Training Requirements | | A list of items to be completed or corrected (I responsibility of the Contractor to complete changes thereof. The amount of completion of the punch list work. | all the Wo | ork in accordance with the Con- | tract Documents, including authorized | | The Contractor shall complete or correct thecalendar days from the above date of iss the Owner has the right to be compensated fo expense of the retained project funds. If the Owner shall be promptly reimbursed for the | uance of thi
r the delays
retained pr | is Certificate. If the list of items and/or complete the work with the oject funds are insufficient to co | is not completed within the time allotted
he help of independent contractor at the
over the delay/completion damages, the | | CONTRACTOR (in all days on a f finn) | _ by: | (Signature) | DATE | | CONTRACTOR (include name of firm) | | (Signature) | DATE | | A/E (include name of firm) | _ by: | (Signature) | DATE | | USING INSTITUTION OR AGENCY | _ by: | (Signature) | DATE | | | _ by: | |
| | DFCM (Owner) | • | (Signature) | DATE | | 4110 State Office Building, Salt Lake City, Velephone 801-538-3018 • facsimile 801-538 | | | cc: Parties Noted DFCM, Director | DFCM Form 7b 071508 22 # STATE OF UTAH - DEPARTMENT OF ADMINISTRATIVE SERVICES **DFCM** # Division of Facilities Construction and Management # **General Contractor Performance Rating Form** | Project Name: | | | DFCM Project# | | | | |---|---|--|--|---|---|--| | Contractor: | A/E: | | | Original Contrac
Amount: | 1 | al Contract
ount: | | (ABC Construction, John Doe, 111-111- | 1111) | (ABC Architects, Jan | e Doe, 222-222-2222) | | | | | DFCM Project Mana | ıger: | | | Contract Date: | · | | | Completion Date: | | | | Date of Rating: | | | | Rating Guideline | QUALITY OF
PRODUCT OR
SERVICES | | COST CONTROL | TIMELINESS OF PERFORMANCE | | IESS RELATIONS | | 5-Exceptional | | | | nance level in any of the abo
clearly exceeds the perforr | | | | 4-Very Good | Contractor is in compliance with contract requirements and/or delivers quality product/service. | | Contractor is effective
in managing costs and
submits current,
accurate, and complete
billings | Contractor is effective in meeting milestones and delivery schedule | technical/ | to inquiries,
service/
ative issues is | | 3-Satisfactory | Minor
inefficiencies/errors
have been identified | | Contractor is usually effective in managing cost | Contractor is usually effective in meeting milestones and delivery schedules | | to inquires technical/
Iministrative issues is
t effective | | 2-Marginal | been encountered r | | Contractor is having
major difficulty
managing cost
effectively | Contractor is having
major difficulty meeting
milestones and delivery
schedule | technical
issues is i | to inquiries,
/service/administrative
marginally effective | | 1-Unsatisfactory | compliance and is manage of | | Contractor is unable to manage costs effectively | Contractor delays are jeopardizing performance of contract objectives | technical/ | to inquiries,
service/administrative
not effective | | | <u>adal ada militare meneris antistian ne e accioni amena</u> | ind vanishin dan kanala kanal | | | | | | Rate Contractors quality project cleanliness, organ | | , - | _ | tractor performance, | | Score | | Agency Comments: | | | | | | | | A & E Comments: | | | | | | | | DFCM Project Manager C | omments: | | | | yan yan an a | | | 2. Rate Contractor administration of project costs, change orders and financial management of the project budget. | Score | |--|-------| | Agency Comments: | | | A & E Comments: | | | DFCM Project Manager Comments: | | | | | | 3. Rate Contractor's performance and adherence to Project Schedule, delay procedures and requirements of substantial completion, inspection and punch-list performance. | Score | | Agency Comments: | | | A & E Comments: | | | DFCM Project Manager Comments: | | | 4. Evaluate performance of contractor management team including project manager, engineer and superintendent also include in the rating team's ability to work well with owner, user agency and consultants. | Score | | Agency Comments: | | | A & E Comments: | | | DFCM Project Manager Comments: | | | 5. Rate success of Contractor's manag project risks and performance of value | ement plan, completion of the plans mitigation of engineering concepts. | Score | |--|---|------------| | Agency Comments: | | | | A & E Comments: | | | | DFCM Project Manager Comments: | | | | Signed by: | Date: | Mean Score | | Additional
Comments: | | | | | | | | | | | | | | | # STATE OF UTAH - DEPARTMENT OF ADMINISTRATIVE SERVICES **DFCM** # Division of Facilities Construction and Management # **General Contractor Performance Rating Form** | Project Name: | | | DFCM Project# | | | | |---|---|--|--|---|---|--| | Contractor: | A/E: | | | Original Contrac
Amount: | 1 | al Contract
ount: | | (ABC Construction, John Doe, 111-111- | 1111) | (ABC Architects, Jan | e Doe, 222-222-2222) | | | | | DFCM Project Mana | ıger: | | | Contract Date: | · | | | Completion Date: | | | | Date of Rating: | | | | Rating Guideline | QUALITY OF
PRODUCT OR
SERVICES | | COST CONTROL | TIMELINESS OF PERFORMANCE | | IESS RELATIONS | | 5-Exceptional | | | | nance level in any of the abo
clearly exceeds the perforr | | | | 4-Very Good | Contractor is in compliance with contract requirements and/or delivers quality product/service. | | Contractor is effective
in managing costs and
submits current,
accurate, and complete
billings | Contractor is effective in meeting milestones and delivery schedule | technical/ | to inquiries,
service/
ative issues is | | 3-Satisfactory | Minor
inefficiencies/errors
have been identified | | Contractor is usually effective in managing cost | Contractor is usually effective in meeting milestones and delivery schedules | | to inquires technical/
Iministrative issues is
t effective | | 2-Marginal | been encountered r | | Contractor is having
major difficulty
managing cost
effectively | Contractor is having
major difficulty meeting
milestones and delivery
schedule | technical
issues is i | to inquiries,
/service/administrative
marginally effective | | 1-Unsatisfactory | compliance and is manage of | | Contractor is unable to manage costs effectively | Contractor delays are jeopardizing performance of contract objectives | technical/ | to inquiries,
service/administrative
not effective | | | <u>adal ada militare meneris antistian ne e accioni amena</u> | ind vanishin dan kanala kanal | | | | | | Rate Contractors quality project cleanliness, organ | | , - | _ | tractor performance, | | Score | | Agency Comments: | | | | | | | | A & E Comments: | | | | | | | | DFCM Project Manager C | omments: | | | | yan yan an a | | | 2. Rate Contractor administration of project costs, change orders and financial management of the project budget. | Score | |--|-------| | Agency Comments: | | | A & E Comments: | | | DFCM Project Manager Comments: | | | | | | 3. Rate Contractor's performance and adherence to Project Schedule, delay procedures and requirements of substantial completion, inspection and punch-list performance. | Score | | Agency Comments: | | | A & E Comments: | | | DFCM Project Manager Comments: | | | 4. Evaluate performance of contractor management team including project manager, engineer and superintendent also include in the rating team's ability to work well with owner, user agency and consultants. | Score | | Agency Comments: | | | A & E Comments: | | | DFCM Project Manager Comments: | | | 5. Rate success of Contractor's manag project risks and performance of value | ement plan, completion of the plans mitigation of engineering concepts. | Score | |--|---|------------| | Agency Comments: | | | | A & E Comments: | | | | DFCM Project Manager Comments: | | | | Signed by: | Date: | Mean Score | | Additional
Comments: | | | | | | | | | | | | | | | # **PROJECT MANUAL** # UTAH NATIONAL GUARD WEST JORDAN RESERVE CENTER OMS ADDITION DFCM Project No: 08031480 **LOCATED: 7602 South Airport Road** West Jordan, Utah # FOR: STATE OF UTAH DIVISION OF FACILITIES CONSTRUCTION AND MANAGEMENT **DATE:** AUGUST 15, 2008 PROJECT NO: B08-024 ARCHITECT: COOPER ROBERTS SIMONSEN ASSOCIATES **700 NORTH 200 WEST** SALT LAKE CITY, UTAH 84103 (801) 355-5915 FAX (801) 355-9885 ## **TABLE OF CONTENTS** | DIVISION 01 | - GENERAL REQUIREMENTS | |--------------------|------------------------| | 011000 | SUMMARY | | 012200 | UNIT PRICES | | 012300 | ALTERNATES | | 012900 | PAYMENT PROCEDURES | | 013100 | PROJECT MANAGEMENT AN | | 013200 | CONSTRUCTION PROGRESS | 013100 PROJECT MANAGEMENT AND COORDINATION 013200 CONSTRUCTION PROGRESS DOCUMENTATION 013300 SUBMITTAL PROCEDURES 013300 SUBMITTAL PROCEDURES 014000 QUALITY REQUIREMENTS 014200 REFERENCES 015000 TEMPORARY FACILITIES AND CONTROLS 016000 PRODUCT REQUIREMENTS 017300 EXECUTION 017329 CUTTING AND PATCHING 017700 CLOSEOUT PROCEDURES 017823 OPERATION AND MAINTENANCE DATA 017839 PROJECT RECORD DOCUMENTS 017900 DEMONSTRATION AND TRAINING #### **DIVISION 02 - EXISTING
CONDITIONS** 024119 SELECTIVE STRUCTURE DEMOLITION # **DIVISION 03 - CONCRETE** 033000 CAST-IN-PLACE CONCRETE ## **DIVISION 05 - METALS** 051200 STRUCTURAL STEEL FRAMING 054000 COLD-FORMED METAL FRAMING 055000 METAL FABRICATIONS # DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES 061053 MISCELLANEOUS ROUGH CARPENTRY ## **DIVISION 07 - THERMAL AND MOISTURE PROTECTION** 072100 THERMAL INSULATION 079200 JOINT SEALANTS # **DIVISION 08 - OPENINGS** 081113 HOLLOW METAL DOORS AND FRAMES 083323 OVERHEAD COILING DOORS 087100 DOOR HARDWARE #### **DIVISION 09 - FINISHES** 096513 RESILIENT BASE AND ACCESSORIES 099113 EXTERIOR PAINTING 099123 INTERIOR PAINTING 099600 HIGH-PERFORMANCE COATINGS # **DIVISION 13 - SPECIAL CONSTRUCTION** 133419 METAL BUILDING SYSTEMS # **DIVISION 14 - CONVEYANCE SYSTEMS** 146000 HOISTS AND CRANES **DIVISION 15 - MECHANICAL & PLUMBING** | 15052 | COMMON WORK RESULTS FOR PLUMBING | |-------|--| | 15053 | COMMON WORK RESULTS FOR HVAC | | 15061 | HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT | | 15062 | HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT | | 15074 | VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT | | 15076 | IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT | | 15077 | IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT | | 15082 | PLUMBING INSULATION | | 15097 | ESCUTCHEONS FOR PLUMBING PIPING | | 15111 | GENERAL-DUTY VALVES FOR PLUMBING PIPING | | 15140 | DOMESTIC WATER PIPING | | 15145 | DOMESTIC WATER PIPING SPECIALTIES | | 15150 | SANITARY WASTE AND VENT PIPING | | 15155 | SANITARY WASTE PIPING SPECIALTIES | | 15160 | STORM DRAINAGE PIPING | STORM DRAINAGE PIPING SPECIALTIES 15165 **FACILITY NATURAL-GAS PIPING** 15195 GENERAL-SERVICE COMPRESSED-AIR PIPING 15211 15543 **FUEL-FIRED UNIT HEATERS** 15550 BREECHINGS, CHIMNEYS, AND STACKS ROOFTOP REPLACEMENT-AIR UNITS 15733 **METAL DUCTS** 15815 15820 **DUCT ACCESSORIES** 15838 POWER VENTILATORS DIFFUSERS, REGISTERS, AND GRILLES 15855 15950 TESTING, ADJUSTING, AND BALANCING COMMON WORK RESULTS ## **DIVISION 26 – ELECTRICAL** 260500 265100 | 260519 | LOW VOLTAGE | |--------|---------------------------------------| | 260526 | GROUNDING AND BONDING | | 260529 | HANGERS AND SUPPORTS | | 260533 | RACEWAYS AND BOXES | | 260548 | VIBRATION AND SEISMIC CONTROL | | 260553 | IDENTIFICATION FOR ELECTRICAL SYSTEMS | | 260923 | LIGHTING CONTROL DEVICES | | 261200 | MEDIUM-VOLTAGE TRANSFORMERS | | 262416 | PANELBOARDS | | 262726 | WIRING DEVICES | | 262913 | ENCLOSED CONTROLLERS | ### **DIVISION 31 - EARTHWORK** 311000 SITE CLEARING **EARTH MOVING** 312000 # **DIVISION 32 - EXTERIOR IMPROVEMENTS** INTERIOR LIGHTING 321216 **ASPHALT PAVING** 321313 **CONCRETE PAVING** CONCRETE PAVING JOINT SEALANTS 321373 # **APPENDIX - GEOTECHNICAL REPORT** SECTION 011000 - SUMMARY ### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following: - 1. Work covered by the Contract Documents. - 2. Type of the Contract. - 3. Work phases. - 4. Use of premises. - 5. Owner's occupancy requirements. - 6. Work restrictions. - Specification formats and conventions. - B. Related Sections include the following: - 1. Division 01 Section "Temporary Facilities and Controls" for limitations and procedures governing temporary use of Owner's facilities. ### 1.3 WORK COVERED BY CONTRACT DOCUMENTS - A. Project Identification: Project Identification: Utah National Guard Organizational Maintenance Shop Addition, DFCM project number 8031480. - 1. Project Location: 7602 South Airport Road. West Jordan Utah.. - B. Owner: Utah State Division of Facilities Construction & Management - Owner's Representative: Wayne Smith DFCM State Office Building, Room 4110 SLC, UT 84114 - C. Architect: Cooper Roberts Simonsen Associates 700 North 200 West Salt Lake City, UT 84103 D. The Work consists of the following: Construct a new, 2,265 SF addition to the existing Organizational Maintenance Shop (OMS), located at the West Jordan Reserve Center (WJRC), including: Earthwork; site improvements; paving; utility services; concrete footings and foundations; pre-engineered steel building; interior improvements; hollow metal doors, frames and hardware; roll-up truck doors; mechanical and plumbing systems; electrical services & lighting; relocate existing jib crane, etc, as required for a complete and usable facility. #### 1.4 TYPE OF CONTRACT A. Project will be constructed under a single prime contract. #### 1.5 USE OF PREMISES - A. General: Contractor shall have full use of premises for construction operations, including use of Project site, during construction period. Contractor's use of premises is limited only by Owner's right to perform work or to retain other contractors on portions of Project. - B. Use of Site: Limit use of premises to areas within the Contract limits indicated. Do not disturb portions of Project site beyond areas in which the Work is indicated. - Limits: Confine constructions operations to contract limits unless approval for additional area is obtained. - 2. Driveways and Entrances: Keep driveways, loading areas, and entrances serving premises clear and available to Owner, Owner's employees, and emergency vehicles at all times. Do not use these areas for parking or storage of materials, except as previous arranged with Owner. - a. Schedule deliveries to minimize use of driveways and entrances. - Schedule deliveries to minimize space and time requirements for storage of materials and equipment on-site. - c. Comply with Owner's requirements for security, access control, and other issues related to work within or in proximity to the State Prison. #### 1.6 OWNER'S OCCUPANCY REQUIREMENTS - A. Partial Owner Occupancy: Owner will occupy the adjacent buildings and facilities during the entire construction period, with the exception of areas under construction. Cooperate with Owner during construction operations to minimize conflicts and facilitate Owner usage. Perform the Work so as not to interfere with Owner's operations. Maintain existing exits, unless otherwise indicated. - 1. Maintain access to existing walkways, corridors, and other adjacent occupied or used facilities. Do not close or obstruct walkways, corridors, or other occupied or used facilities without written permission from Owner and authorities having jurisdiction. - 2. Provide not less than 72 hours' notice to Owner of activities that will affect Owner's operations. ## 1.7 WORK RESTRICTIONS - A. On-Site Work Hours: Work shall be generally performed during normal business working hours of 7:00 a.m. to 5:00 p.m., Monday through Friday, except where otherwise indicated or by special arrangement. - 1. Hours for Utility Shutdowns: Before or after business hours: Coordinate with owner. - B. Existing Utility Interruptions: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated: - 1. Notify Owner not less than seven days in advance of proposed utility interruptions. - 2. Do not proceed with utility interruptions without Owner's written permission. # 1.8 SPECIFICATION FORMATS AND CONVENTIONS A. Specification Format: The Specifications are organized into Divisions and Sections using the 50-division format and CSI/CSC's "MasterFormat" numbering system. - Section Identification: The Specifications use Section numbers and titles to help cross-referencing in the Contract Documents. Sections in the Project Manual are in numeric sequence; however, the sequence is incomplete because all available Section numbers are not used. Consult the table of contents at the beginning of the Project Manual to determine numbers and names of Sections in the Contract Documents. - 2. Division 01: Sections in Division 01 govern the execution of the Work of all Sections in the Specifications. - B. Specification Content: The Specifications use certain conventions for the style of language and the intended meaning of certain terms, words, and phrases when used in particular situations. These conventions are as follows: - Abbreviated Language: Language used in the Specifications and other Contract Documents is abbreviated. Words and meanings shall be interpreted as appropriate. Words implied, but not stated, shall be inferred as the sense requires. Singular words shall be interpreted as plural, and plural words shall be interpreted as singular where applicable as the context of the Contract Documents indicates. - 2. Imperative mood and streamlined language are generally used in the Specifications. Requirements expressed in the imperative mood are to be performed by Contractor. Occasionally, the indicative or subjunctive mood may be used in the Section Text for clarity to describe responsibilities that must be fulfilled indirectly by Contractor or by others when so noted. - a. The words "shall," "shall be," or "shall comply with," depending on the context, are implied where a colon (:) is used within a sentence or phrase. #### 1.9 MISCELLANEOUS PROVISIONS PART 2 - PRODUCTS (Not Used) PART 3 - EXECUTION (Not Used) END OF SECTION 011000 ## SECTION 012200 - UNIT PRICES #### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS - A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section. - B. Geotechnical Study prepared by GSH Geotechnical Consultants, Inc, dated May 6, 2008, included in this Specification as Attachment No. 1. #### 1.2 SUMMARY - A. This Section includes administrative and procedural requirements for unit prices. - B. Related Sections include the following: - Division 01 Section "Contract Modification Procedures"
for procedures for submitting and handling Change Orders. - 2. Division 01 Section "Quality Requirements" for general testing and inspecting requirements. #### 1.3 DEFINITIONS A. Unit price is an amount proposed by bidders, stated on the Bid Form, as a price per unit of measurement for materials or services added to or deducted from the Contract Sum by appropriate modification, if estimated quantities of Work required by the Contract Documents are increased or decreased. ## 1.4 PROCEDURES - A. Unit prices include all necessary material, plus cost for delivery, installation, insurance, overhead, and profit. - B. Measurement and Payment: Refer to individual Specification Sections for work that requires establishment of unit prices. Methods of measurement and payment for unit prices are specified in those Sections. - C. Owner reserves the right to reject Contractor's measurement of work-in-place that involves use of established unit prices and to have this work measured, at Owner's expense, by an independent surveyor acceptable to Contractor. - D. List of Unit Prices: A list of unit prices is included in Part 3. Specification Sections referenced in the schedule contain requirements for materials described under each unit price. PART 2 - PRODUCTS (Not Used) #### PART 3 - EXECUTION #### 3.1 LIST OF UNIT PRICES - A. Unit Price No. 1 Excavation: - Description: Excavation, removal, cartage, and legal disposal of unacceptable soils, per Soils Report. - 2. Unit of Measurement: per Cubic Yard. - B. Unit Price No. 3 Structural Fill: - 1. Description: Imported Structural Fill material, cartage, placement, and compaction, per Soils Report, Section 5.2 "Earthwork" - a. Under building. - b. In utility trenches. - 2. Place in lifts and compact to 96% of the modified proctor, as indicated in soils report. - 3. Unit of Measurement: per Cubic Yard. END OF SECTION 012200 #### SECTION 012300 - ALTERNATES ## PART 1 - GENERAL # 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section. # 1.2 SUMMARY A. This Section includes administrative and procedural requirements for alternates. ## 1.3 DEFINITIONS - A. Alternate: An amount proposed by bidders and stated on the Bid Form for certain work defined in the Bidding Requirements that may be added to or deducted from the Base Bid amount if Owner decides to accept a corresponding change either in the amount of construction to be completed or in the products, materials, equipment, systems, or installation methods described in the Contract Documents. - The cost or credit for each alternate is the net addition to or deduction from the Contract Sum to incorporate alternate into the Work. No other adjustments are made to the Contract Sum. # 1.4 PROCEDURES - A. Coordination: Modify or adjust affected adjacent work as necessary to completely integrate work of the alternate into Project. - 1. Include as part of each alternate, miscellaneous devices, accessory objects, and similar items incidental to or required for a complete installation whether or not indicated as part of alternate. - B. Notification: Immediately following award of the Contract, notify each party involved, in writing, of the status of each alternate. Indicate if alternates have been accepted, rejected, or deferred for later consideration. Include a complete description of negotiated modifications to alternates. - C. Execute accepted alternates under the same conditions as other work of the Contract. - D. Schedule: A Schedule of Alternates is included at the end of this Section. Specification Sections referenced in schedule contain requirements for materials necessary to achieve the work described under each alternate. ALTERNATES 012300 - 1 PART 2 - PRODUCTS (Not Used) ## PART 3 - EXECUTION # 3.1 SCHEDULE OF ALTERNATES - A. Alternate No. 1 (Additive): All work associated with construction of the new, exterior vehicle wash stand, including extension of associated sanitary sewer and culinary water connections. (Base bid includes stubbing these services to the building perimeter for future connection.) - B. Alternate No. 2 (Additive/Deductive TBD): Base contract calls for re-installation of the existing crane on a reinforced concrete pedestal. This alternate consists of all work required to omit the concrete pedestal and extend the crane's mast as indicated in drawings provided separately by the crane manufacturer, including all structural and electrical work required to implement this change, resulting in a complete and operable installation. - C. Alternate No. 3 (Additive): Base contract does not specify a floor sealer for interior concrete surfaces. This alternate consists of all labor and materials required for installation of water-based epoxy floor coatings as specified in Section 099600 High Performance Coatings. END OF SECTION 012300 ALTERNATES 012300 - 2 ## SECTION 012900 - PAYMENT PROCEDURES ## PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section. ## 1.2 SUMMARY - A. This Section specifies administrative and procedural requirements necessary to prepare and process Applications for Payment. - B. Related Sections include the following: - Division 01 Section "Contract Modification Procedures" for administrative procedures for handling changes to the Contract. - 2. Division 01 Section "Unit Prices" for administrative requirements governing use of unit prices. - 3. Division 01 Section "Construction Progress Documentation" for administrative requirements governing preparation and submittal of Contractor's Construction Schedule and Submittals Schedule. ## 1.3 DEFINITIONS A. Schedule of Values: A statement furnished by Contractor allocating portions of the Contract Sum to various portions of the Work and used as the basis for reviewing Contractor's Applications for Payment. ### 1.4 SCHEDULE OF VALUES - Coordination: Coordinate preparation of the Schedule of Values with preparation of Contractor's Construction Schedule. - 1. Correlate line items in the Schedule of Values with other required administrative forms and schedules, including the following: - a. Application for Payment forms with Continuation Sheets. - b. Submittals Schedule. - c. Contractor's Construction Schedule. - 2. Submit the Schedule of Values to Architect at earliest possible date but no later than seven days before the date scheduled for submittal of initial Applications for Payment. - B. Format and Content: Use the Project Manual table of contents as a guide to establish line items for the Schedule of Values. Provide at least one line item for each Specification Section. - 1. Identification: Include the following Project identification on the Schedule of Values: - a. Project name and location. - b. Name of Architect. - c. Architect's project number. - d. Contractor's name and address. - e. Date of submittal. - 2. Submit draft of AIA Document G703 Continuation Sheets. - Arrange the Schedule of Values in tabular form with separate columns to indicate the following for each item listed: - a. Name of subcontractor. - b. Name of manufacturer or fabricator. - c. Name of supplier. - d. Change Orders (numbers) that affect value. - e. Dollar value. - Percentage of the Contract Sum to nearest one-hundredth percent, adjusted to total 100 percent. - 4. Provide a breakdown of the Contract Sum in enough detail to facilitate continued evaluation of Applications for Payment and progress reports. Coordinate with the Project Manual table of contents. Provide several line items for principal subcontract amounts, where appropriate. - 5. Round amounts to nearest whole dollar; total shall equal the Contract Sum. - 6. Provide a separate line item in the Schedule of Values for each part of the Work where Applications for Payment may include materials or equipment purchased or fabricated and stored, but not yet installed. - a. Differentiate between items stored on-site and items stored off-site. If specified, include evidence of insurance or bonded warehousing. - 7. Provide separate line items in the Schedule of Values for initial cost of materials, for each subsequent stage of completion, and for total installed value of that part of the Work. - 8. Allowances: Provide a separate line item in the Schedule of Values for each allowance. Show line-item value of unit-cost allowances, as a product of the unit cost, multiplied by measured quantity. Use information indicated in the Contract Documents to determine quantities. - 9. Each item in the Schedule of Values and Applications for Payment shall be complete. Include total cost and proportionate share of general overhead and profit for each item. - a. Temporary facilities and other major cost items that are not direct cost of actual work-inplace may be shown either as separate line items in the Schedule of Values or distributed as general overhead expense, at Contractor's option. - Schedule Updating: Update and resubmit the Schedule of Values before the next Applications for Payment when Change Orders or Construction Change Directives result in a change in the Contract Sum. # 1.5 APPLICATIONS FOR PAYMENT - A. Each Application for Payment shall be consistent with previous applications and payments as certified by Architectand paid for by Owner. - 1. Initial Application for Payment, Application for Payment at time of Substantial Completion, and final Application for Payment involve additional requirements. - B. Payment Application Times: The date for each progress payment is indicated in the Agreement between Owner and Contractor. The period of construction Work covered by each Application for Payment is the period indicated in the Agreement. - C. Payment Application Forms: Use AIA Document G702 and AIA Document G703 Continuation Sheets as form for
Applications for Payment. - D. Application Preparation: Complete every entry on form. Notarize and execute by a person authorized to sign legal documents on behalf of Contractor. Owner will return incomplete applications without action. - 1. Entries shall match data on the Schedule of Values and Contractor's Construction Schedule. Use updated schedules if revisions were made. - 2. Include amounts of Change Orders and Construction Change Directives issued before last day of construction period covered by application. - E. Transmittal: Submit 3 signed and notarized original copies of each Application for Payment to Architect by a method ensuring receipt. One copy shall include waivers of lien and similar attachments if required. - Transmit each copy with a transmittal form listing attachments and recording appropriate information about application. - F. Initial Application for Payment: Administrative actions and submittals that must precede or coincide with submittal of first Application for Payment include the following: - List of subcontractors. - 2. Schedule of Values. - 3. Contractor's Construction Schedule (preliminary if not final). - 4. Schedule of unit prices. - 5. Submittals Schedule (preliminary if not final). - 6. Report of preconstruction conference. - 7. Certificates of insurance and insurance policies. - 8. Performance and payment bonds. - G. Application for Payment at Substantial Completion: After issuing the Certificate of Substantial Completion, submit an Application for Payment showing 100 percent completion for portion of the Work claimed as substantially complete. - 1. Include documentation supporting claim that the Work is substantially complete and a statement showing an accounting of changes to the Contract Sum. - 2. This application shall reflect Certificates of Partial Substantial Completion issued previously for Owner occupancy of designated portions of the Work. - H. Final Payment Application: Submit final Application for Payment with supporting documentation not previously submitted and accepted, including, but not limited, to the following: - 1. Evidence of completion of Project closeout requirements. - Insurance certificates for products and completed operations where required and proof that taxes, fees, and similar obligations were paid. - 3. Updated final statement, accounting for final changes to the Contract Sum. - 4. AlA Document G706, "Contractor's Affidavit of Payment of Debts and Claims." - 5. AIA Document G706A, "Contractor's Affidavit of Release of Liens." - 6. AIA Document G707, "Consent of Surety to Final Payment." - Final meter readings for utilities, a measured record of stored fuel, and similar data as of date of Substantial Completion or when Owner took possession of and assumed responsibility for corresponding elements of the Work. PART 2 - PRODUCTS (Not Used) PART 3 - EXECUTION (Not Used) END OF SECTION 012900 BLANK PAGE ## SECTION 013100 - PROJECT MANAGEMENT AND COORDINATION ## PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section. ## 1.2 SUMMARY - A. This Section includes administrative provisions for coordinating construction operations on Project including, but not limited to, the following: - 1. Coordination Drawings. - 2. Administrative and supervisory personnel. - 3. Project meetings. - 4. Requests for Interpretation (RFIs). - B. Each contractor shall participate in coordination requirements. Certain areas of responsibility will be assigned to a specific contractor. - C. Related Sections include the following: - Division 01 Section "Construction Progress Documentation" for preparing and submitting Contractor's Construction Schedule. - 2. Division 01 Section "Execution" for procedures for coordinating general installation and field-engineering services, including establishment of benchmarks and control points. - 3. Division 01 Section "Closeout Procedures" for coordinating closeout of the Contract. # 1.3 DEFINITIONS A. RFI: Request from Contractor seeking interpretation or clarification of the Contract Documents. ### 1.4 COORDINATION - A. Coordination: Coordinate construction operations included in different Sections of the Specifications to ensure efficient and orderly installation of each part of the Work. Coordinate construction operations, included in different Sections, that depend on each other for proper installation, connection, and operation. - Schedule construction operations in sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation. - 2. Coordinate installation of different components with other contractors to ensure maximum accessibility for required maintenance, service, and repair. - 3. Make adequate provisions to accommodate items scheduled for later installation. - 4. Where availability of space is limited, coordinate installation of different components to ensure maximum performance and accessibility for required maintenance, service, and repair of all components, including mechanical and electrical. - B. Prepare memoranda for distribution to each party involved, outlining special procedures required for coordination. Include such items as required notices, reports, and list of attendees at meetings. - Prepare similar memoranda for Owner and separate contractors if coordination of their Work is required. - C. Administrative Procedures: Coordinate scheduling and timing of required administrative procedures with other construction activities and activities of other contractors to avoid conflicts and to ensure orderly progress of the Work. Such administrative activities include, but are not limited to, the following: - 1. Preparation of Contractor's Construction Schedule. - 2. Preparation of the Schedule of Values. - 3. Installation and removal of temporary facilities and controls. - 4. Delivery and processing of submittals. - 5. Progress meetings. - 6. Pre-installation conferences. - 7. Project closeout activities. - 8. Startup and adjustment of systems. - 9. Project closeout activities. - D. Conservation: Coordinate construction activities to ensure that operations are carried out with consideration given to conservation of energy, water, and materials. - Salvage materials and equipment involved in performance of, but not actually incorporated into, the Work. Refer to other Sections for disposition of salvaged materials that are designated as Owner's property. ## 1.5 SUBMITTALS - A. Coordination Drawings: Prepare Coordination Drawings if limited space availability necessitates maximum utilization of space for efficient installation of different components or if coordination is required for installation of products and materials fabricated by separate entities. - 1. Content: Project-specific information, drawn accurately to scale. Do not base Coordination Drawings on reproductions of the Contract Documents or standard printed data. Include the following information, as applicable: - Indicate functional and spatial relationships of components of architectural, structural, civil, mechanical, and electrical systems. - b. Indicate required installation sequences. - c. Indicate dimensions shown on the Contract Drawings and make specific note of dimensions that appear to be in conflict with submitted equipment and minimum clearance requirements. Provide alternate sketches to Architect for resolution of such conflicts. Minor dimension changes and difficult installations will not be considered changes to the Contract. - Sheet Size: At least 8-1/2 by 11 inches (215 by 280 mm) but no larger than 30 by 40 inches (750 by 1000 mm). - 3. Number of Copies: Subcontractor shall submit six opaque copies of each submittal to contractor. Contractor will submit five copies to Architect. Architect will return three copies. - a. Submit five copies where Coordination Drawings are required for operation and maintenance manuals. Architect will retain two copies; remainder will be returned. Mark up and retain one returned copy as a Project Record Drawing. - 4. Refer to individual Sections for Coordination Drawing requirements for Work in those Sections. - B. Key Personnel Names: Within 15 days of starting construction operations, submit a list of key personnel assignments, including superintendent and other personnel in attendance at Project site. Identify individuals and their duties and responsibilities; list addresses and telephone numbers, including home and office telephone numbers. Provide names, addresses, and telephone numbers of individuals assigned as standbys in the absence of individuals assigned to Project. 1. Post copies of list in Project meeting room, in temporary field office, and by each temporary telephone. Keep list current at all times. ## 1.6 ADMINISTRATIVE AND SUPERVISORY PERSONNEL A. General: In addition to Project superintendent, provide other administrative and supervisory personnel as required for proper performance of the Work. ## 1.7 PROJECT MEETINGS - A. General: Schedule and conduct meetings and conferences at Project site, unless otherwise indicated. - Attendees: Inform participants and others involved, and individuals whose presence is required, of date and time of each meeting. Notify Owner and Architect of scheduled meeting dates and times. - 2. Agenda: Prepare the meeting agenda. Distribute the agenda to all invited attendees. - 3. Minutes: Record significant discussions and agreements achieved. Distribute the meeting minutes to everyone concerned, including Owner and Architect, within three days of the meeting. - B. Preconstruction Conference: Schedule a preconstruction conference before starting construction, at a time convenient to Owner and Architect, but no later than 15 days after execution of the Agreement. Hold the conference at Project site or another
convenient location. Conduct the meeting to review responsibilities and personnel assignments. - Attendees: Authorized representatives of Owner, Architect, and their consultants; Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the conference. All participants at the conference shall be familiar with Project and authorized to conclude matters relating to the Work. - 2. Agenda: Discuss items of significance that could affect progress, including the following: - a. Tentative construction schedule. - b. Phasing. - c. Critical work sequencing and long-lead items. - d. Designation of key personnel and their duties. - e. Procedures for processing field decisions and Change Orders. - f. Procedures for RFIs. - g. Procedures for testing and inspecting. - h. Procedures for processing Applications for Payment. - i. Distribution of the Contract Documents. - j. Submittal procedures. - k. Preparation of Record Documents. - I. Use of the premises and existing building. - m. Work restrictions. - n. Owner's occupancy requirements. - o. Responsibility for temporary facilities and controls. - p. Construction waste management and recycling. - q. Parking availability. - r. Office, work, and storage areas. - s. Equipment deliveries and priorities. - t. First aid. - u. Security. - v. Progress cleaning. - w. Working hours. - 3. Minutes: Record and distribute meeting minutes. - C. Pre-installation Conferences: Conduct a pre-installation conference at Project site before each construction activity that requires coordination with other construction. - 1. Attendees: Installer and representatives of manufacturers and fabricators involved in or affected by the installation and its coordination or integration with other materials and installations that have preceded or will follow, shall attend the meeting. Advise Architect of scheduled meeting dates. - 2. Agenda: Review progress of other construction activities and preparations for the particular activity under consideration, including requirements for the following: - a. The Contract Documents. - b. Options. - c. Related RFIs. - d. Related Change Orders. - e. Purchases. - f. Deliveries. - g. Submittals. - h. Review of mockups. - i. Possible conflicts. - j. Compatibility problems. - k. Time schedules. - I. Weather limitations. - m. Manufacturer's written recommendations. - n. Warranty requirements. - o. Compatibility of materials. - p. Acceptability of substrates. - q. Temporary facilities and controls. - r. Space and access limitations. - s. Regulations of authorities having jurisdiction. - t. Testing and inspecting requirements. - u. Installation procedures. - v. Coordination with other work. - w. Required performance results. - x. Protection of adjacent work. - y. Protection of construction and personnel. - 3. Record significant conference discussions, agreements, and disagreements, including required corrective measures and actions. - 4. Reporting: Distribute minutes of the meeting to each party present and to parties who should have been present. - 5. Do not proceed with installation if the conference cannot be successfully concluded. Initiate whatever actions are necessary to resolve impediments to performance of the Work and reconvene the conference at earliest feasible date. - D. Progress Meetings: Conduct progress meetings at regular intervals. Coordinate dates of meetings with preparation of payment requests. - Attendees: In addition to representatives of Owner and Architect, each contractor, subcontractor, supplier, and other entity concerned with current progress or involved in planning, coordination, or performance of future activities shall be represented at these meetings. All participants at the conference shall be familiar with Project and authorized to conclude matters relating to the Work. - 2. Agenda: Review and correct or approve minutes of previous progress meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to status of Project. - a. Contractor's Construction Schedule: Review progress since the last meeting. Determine whether each activity is on time, ahead of schedule, or behind schedule, in relation to Contractor's Construction Schedule. Determine how construction behind schedule will be expedited; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities will be completed within the Contract Time. - 1) Review schedule for next period. - b. Review present and future needs of each entity present, including the following: - 1) Interface requirements. - 2) Sequence of operations. - 3) Status of submittals. - Deliveries. - 5) Off-site fabrication. - 6) Access. - 7) Site utilization. - 8) Temporary facilities and controls. - 9) Work hours. - 10) Hazards and risks. - 11) Progress cleaning. - 12) Quality and work standards. - 13) Status of correction of deficient items. - 14) Field observations. - 15) RFIs. - 16) Status of proposal requests. - 17) Pending changes. - 18) Status of Change Orders. - 19) Pending claims and disputes. - 20) Documentation of information for payment requests. - 3. Minutes: Record the meeting minutes. - Reporting: Distribute minutes of the meeting to each party present and to parties who should have been present. - a. Schedule Updating: Revise Contractor's Construction Schedule after each progress meeting where revisions to the schedule have been made or recognized. Issue revised schedule concurrently with the report of each meeting. ## 1.8 REQUESTS FOR INFORMATION (RFI's) - A. Procedure: Immediately on discovery of the need for interpretation of the Contract Documents or supplementary information relating to the design, and if not possible to request interpretation at Project meeting, prepare and submit an RFI in the form specified. - RFIs shall originate with Contractor. RFIs submitted by entities other than Contractor will be returned with no response. - Coordinate and submit RFIs in a prompt manner so as to avoid delays in Contractor's work or work of subcontractors. - B. Content of the RFI: Include a detailed, legible description of item needing interpretation and the following: - 1. Project name. - 2. Date. - 3. Name of Contractor. - 4. Name of Architect. - 5. RFI number, numbered sequentially. - 6. Specification Section number and title and related paragraphs, as appropriate. - 7. Drawing number and detail references, as appropriate. - 8. Field dimensions and conditions, as appropriate. - Contractor's suggested solution(s). If Contractor's solution(s) impact the Contract Time or the Contract Sum, Contractor shall state impact in the RFI. - 10. Contractor's signature. - 11. Attachments: Include drawings, descriptions, measurements, photos, Product Data, Shop Drawings, and other information necessary to fully describe items needing interpretation. - a. Supplementary drawings prepared by Contractor shall include dimensions, thicknesses, structural grid references, and details of affected materials, assemblies, and attachments. - C. Software-Generated RFIs: Software-generated form with substantially the same content as indicated above. - 1. Attachments shall be electronic files in Adobe Acrobat PDF format. - D. Architect's Action: Architect will review each RFI, determine action required, and return it. Allow seven working days for Architect's response for each RFI. RFIs received after 1:00 p.m. will be considered as received the following working day. - 1. The following RFIs will be returned without action: - Requests for approval of submittals. - b. Requests for approval of substitutions. - c. Requests for coordination information already indicated in the Contract Documents. - d. Requests for adjustments in the Contract Time or the Contract Sum. - e. Requests for interpretation of Architect's actions on submittals. - f. Incomplete RFIs or RFIs with numerous errors. - 2. Architect's action may include a request for additional information, in which case Architect's time for response will start again. - Architect's action on RFIs that may result in a change to the Contract Time or the Contract Sum may be eligible for Contractor to submit Change Proposal according to Division 01 Section "Contract Modification Procedures." - a. If Contractor believes the RFI response warrants change in the Contract Time or the Contract Sum, notify Architect in writing within 10 days of receipt of the RFI response. - E. On receipt of Architect's action, update the RFI log and immediately distribute the RFI response to affected parties. Review response and notify Architect within seven days if Contractor disagrees with response. - F. RFI Log: Prepare, maintain, and submit a tabular log of RFIs organized by the RFI number. Submit log weekly. Software log with not less than the following: - 1. Project name. - Name and address of Contractor. - 3. Name and address of Architect. - 4. RFI number including RFIs that were dropped and not submitted. - RFI description. - 6. Date the RFI was submitted. - 7. Date Architect's response was received. - 8. Identification of related Minor Change in the Work, Construction Change Directive, and Proposal Request, as appropriate. - 9. Identification of related Field Order, Work Change Directive, and Proposal Request, as appropriate. PART 2 - PRODUCTS (Not Used) PART 3 - EXECUTION (Not Used) END OF SECTION 013100 ## SECTION 013200 - CONSTRUCTION PROGRESS DOCUMENTATION ## PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section. ## 1.2 SUMMARY - A. This Section includes administrative and procedural requirements for documenting the progress of construction during performance of the Work, including the following: - 1. Preliminary Construction Schedule. - 2. Contractor's
Construction Schedule. - Submittals Schedule. - 4. Daily construction reports. - 5. Special reports. - B. Related Sections include the following: - 1. Division 01 Section "Payment Procedures" for submitting the Schedule of Values. - 2. Division 01 Section "Project Management and Coordination" for submitting and distributing meeting and conference minutes. - 3. Division 01 Section "Submittal Procedures" for submitting schedules and reports. - 4. Division 01 Section "Quality Requirements" for submitting a schedule of tests and inspections. ## 1.3 DEFINITIONS - A. Activity: A discrete part of a project that can be identified for planning, scheduling, monitoring, and controlling the construction project. Activities included in a construction schedule consume time and resources. - 1. Predecessor Activity: An activity that precedes another activity in the network. - 2. Successor Activity: An activity that follows another activity in the network. - B. Event: The starting or ending point of an activity. - C. Float: The measure of leeway in starting and completing an activity. - Float time is not for the exclusive use or benefit of either Owner or Contractor, but is a jointly owned, expiring Project resource available to both parties as needed to meet schedule milestones and Contract completion date. - 2. Free float is the amount of time an activity can be delayed without adversely affecting the early start of the successor activity. - Total float is the measure of leeway in starting or completing an activity without adversely affecting the planned Project completion date. - D. Major Area: A story of construction, a separate building, or a similar significant construction element. - E. Milestone: A key or critical point in time for reference or measurement. ## 1.4 SUBMITTALS - A. Submittals Schedule: Submit three copies of schedule. Arrange the following information in a tabular format: - 1. Scheduled date for first submittal. - 2. Specification Section number and title. - 3. Submittal category (action or informational). - 4. Name of subcontractor. - 5. Description of the Work covered. - 6. Scheduled date for Architect's final release or approval. - B. Preliminary Construction Schedule: Submit three opaque copies. - Approval of cost-loaded preliminary construction schedule will not constitute approval of Schedule of Values for cost-loaded activities. - C. Contractor's Construction Schedule: Submit three opaque copies of initial schedule, large enough to show entire schedule for entire construction period. - D. Daily Construction Reports: Submit three copies at weekly intervals. - E. Special Reports: Submit three copies at time of unusual event. #### 1.5 COORDINATION - A. Coordinate preparation and processing of schedules and reports with performance of construction activities and with scheduling and reporting of separate contractors. - B. Coordinate Contractor's Construction Schedule with the Schedule of Values, list of subcontracts, Submittals Schedule, progress reports, payment requests, and other required schedules and reports. - 1. Secure time commitments for performing critical elements of the Work from parties involved. - Coordinate each construction activity in the network with other activities and schedule them in proper sequence. ## PART 2 - PRODUCTS # 2.1 SUBMITTALS SCHEDULE - A. Preparation: Submit a schedule of submittals, arranged in chronological order by dates required by construction schedule. Include time required for review, resubmittal, ordering, manufacturing, fabrication, and delivery when establishing dates. - Coordinate Submittals Schedule with list of subcontracts, the Schedule of Values, and Contractor's Construction Schedule. - 2. Initial Submittal: Submit concurrently with preliminary bar-chart schedule. Include submittals required during the first 60 days of construction. List those required to maintain orderly progress of the Work and those required early because of long lead time for manufacture or fabrication. - a. At Contractor's option, show submittals on the Preliminary Construction Schedule, instead of tabulating them separately. - 3. Final Submittal: Submit concurrently with the first complete submittal of Contractor's Construction Schedule. - 2.2 CONTRACTOR'S CONSTRUCTION SCHEDULE, GENERAL - A. Procedures: Comply with procedures contained in AGC's "Construction Planning & Scheduling." - B. Time Frame: Extend schedule from date established for commencement of the Work to date of Final Completion. - 1. Contract completion date shall not be changed by submission of a schedule that shows an early completion date, unless specifically authorized by Change Order. - C. Activities: Treat each story or separate area as a separate numbered activity for each principal element of the Work. Comply with the following: - Activity Duration: Define activities so no activity is longer than 20 days, unless specifically allowed by Architect. - Procurement Activities: Include procurement process activities for the following long lead items and major items, requiring a cycle of more than 60 days, as separate activities in schedule. Procurement cycle activities include, but are not limited to, submittals, approvals, purchasing, fabrication, and delivery. - 3. Submittal Review Time: Include review and resubmittal times indicated in Division 01 Section "Submittal Procedures" in schedule. Coordinate submittal review times in Contractor's Construction Schedule with Submittals Schedule. - 4. Startup and Testing Time: Include not less than 10 days for startup and testing. - Substantial Completion: Indicate completion in advance of date established for Substantial Completion, and allow time for Architect's administrative procedures necessary for certification of Substantial Completion. - D. Constraints: Include constraints and work restrictions indicated in the Contract Documents and as follows in schedule, and show how the sequence of the Work is affected. - 1. Phasing: Arrange list of activities on schedule by phase. - Owner-Furnished Products: Include a separate activity for each product. Include delivery date indicated in Division 01 Section "Summary." Delivery dates indicated stipulate the earliest possible delivery date. - 3. Work Restrictions: Show the effect of the following items on the schedule: - a. Coordination with existing construction. - b. Uninterruptible services. - c. Use of premises restrictions. - d. Provisions for future construction. - e. Seasonal variations. - f. Environmental control. - 4. Work Stages: Indicate important stages of construction for each major portion of the Work, including, but not limited to, the following: - a. Subcontract awards. - b. Submittals. - c. Purchases. - d. Mockups. - e. Fabrication. - f. Sample testing. - g. Deliveries. - h. Installation. - i. Tests and inspections. - j. Adjusting. - k. Curing. - I. Startup and placement into final use and operation. - E. Milestones: Include milestones indicated in the Contract Documents in schedule, including, but not limited to, the Notice to Proceed, Substantial Completion, and Final Completion, and the following interim milestones: - 1. Start and finish of each work package. - F. Cost Correlation: At the head of schedule, provide a cost correlation line, indicating planned and actual costs. On the line, show dollar volume of the Work performed as of dates used for preparation of payment requests. - 1. Refer to Division 01 Section "Payment Procedures" for cost reporting and payment procedures. # 2.3 PRELIMINARY CONSTRUCTION SCHEDULE - A. Bar-Chart Schedule: Submit preliminary horizontal bar-chart-type construction schedule within seven days of date established for commencement of the Work. - B. Preparation: Indicate each significant construction activity separately. Identify first workday of each week with a continuous vertical line. Outline significant construction activities for first 60 of construction. Include skeleton diagram for the remainder of the Work and a cash requirement prediction based on indicated activities. # 2.4 CONTRACTOR'S CONSTRUCTION SCHEDULE (GANTT CHART) - A. Gantt-Chart Schedule: Submit a comprehensive, fully developed, horizontal Gantt-chart-type, Contractor's Construction Schedule within 30 days of date established for commencement of the Work Base schedule on the Preliminary Construction Schedule and whatever updating and feedback was received since the start of Project. - B. Preparation: Indicate each significant construction activity separately. Identify first workday of each week with a continuous vertical line. - 1. For construction activities that require 3 months or longer to complete, indicate an estimated completion percentage in 10 percent increments within time bar. ## 2.5 REPORTS - A. Daily Construction Reports: Prepare a daily construction report recording the following information concerning events at Project site: - 1. List of subcontractors at Project site. - 2. List of separate contractors at Project site. - 3. Approximate count of personnel at Project site. - 4. Equipment at Project site. - Material deliveries. - 6. High and low temperatures and general weather conditions. - Accidents. - 8. Meetings and significant decisions. - 9. Unusual events (refer to special reports). - 10. Stoppages, delays, shortages, and losses. - 11. Meter readings and similar recordings. - 12. Emergency procedures. - 13. Orders and requests of authorities having jurisdiction. - 14. Change Orders received and implemented. - 15. Construction Change Directives received and implemented. - 16. Services connected and disconnected. - 17. Equipment or system tests and startups. - 18. Partial Completions and occupancies. - 19. Substantial Completions authorized. ## 2.6 SPECIAL REPORTS - A. General: Submit special reports directly to Owner within one days of an occurrence. Distribute copies of report to parties affected by the occurrence. - B. Reporting Unusual Events: When an event of an unusual and
significant nature occurs at Project site, whether or not related directly to the Work, prepare and submit a special report. List chain of events, persons participating, response by Contractor's personnel, evaluation of results or effects, and similar pertinent information. Advise Owner in advance when these events are known or predictable. ## PART 3 - EXECUTION ## 3.1 CONTRACTOR'S CONSTRUCTION SCHEDULE - A. Contractor's Construction Schedule Updating: At monthly intervals, update schedule to reflect actual construction progress and activities. Issue schedule one week before each regularly scheduled monthend meeting. - 1. Revise schedule immediately after each meeting or other activity where revisions have been recognized or made. Issue updated schedule concurrently with the report of each such meeting. - 2. Include a report with updated schedule that indicates every change, including, but not limited to, changes in logic, durations, actual starts and finishes, and activity durations. - 3. As the Work progresses, indicate Actual Completion percentage for each activity. - B. Distribution: Distribute copies of approved schedule to Architect Owner, separate contractors, testing and inspecting agencies, and other parties identified by Contractor with a need-to-know schedule responsibility. - 1. Post copies in Project meeting rooms and temporary field offices. - 2. When revisions are made, distribute updated schedules to the same parties and post in the same locations. Delete parties from distribution when they have completed their assigned portion of the Work and are no longer involved in performance of construction activities. END OF SECTION 013200 BLANK PAGE ## SECTION 013300 - SUBMITTAL PROCEDURES #### PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section. ## 1.2 SUMMARY - A. This Section includes administrative and procedural requirements for submitting Shop Drawings, Product Data, Samples, and other submittals. - B. Related Sections include the following: - 1. Division 01 Section "Payment Procedures" for submitting Applications for Payment and the Schedule of Values. - 2. Division 01 Section "Project Management and Coordination" for submitting and distributing meeting and conference minutes and for submitting Coordination Drawings. - Division 01 Section "Construction Progress Documentation" for submitting schedules and reports, including Contractor's Construction Schedule and the Submittals Schedule. - 4. Division 01 Section "Quality Requirements" for submitting test and inspection reports and for mockup requirements. - 5. Division 01 Section "Closeout Procedures" for submitting warranties. - 6. Division 01 Section "Project Record Documents" for submitting Record Drawings, Record Specifications, and Record Product Data. - 7. Division 01 Section "Operation and Maintenance Data" for submitting operation and maintenance manuals. - 8. Division 01 Section "Demonstration and Training" for submitting videotapes of demonstration of equipment and training of Owner's personnel. - 9. Divisions 02 through 49 Sections for specific requirements for submittals in those Sections. # 1.3 DEFINITIONS - A. Action Submittals: Written and graphic information that requires Architect's responsive action. - B. Informational Submittals: Written information that does not require Architect's responsive action. Submittals may be rejected for not complying with requirements. ## 1.4 SUBMITTAL PROCEDURES - A. General: Electronic copies of CAD Drawings of the Contract Drawings will be provided by Architect for Contractor's use in preparing submittals, subject to receipt of waiver of liability. - B. Coordination: Coordinate preparation and processing of submittals with performance of construction activities. - 1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity. - 2. Coordinate transmittal of different types of submittals for related parts of the Work so processing will not be delayed because of need to review submittals concurrently for coordination. - Architect reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received. - C. Submittals Schedule: Comply with requirements in Division 01 Section "Construction Progress Documentation" for list of submittals and time requirements for scheduled performance of related construction activities. - D. Processing Time: Allow enough time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Architect's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals. - 1. Initial Review: Allow 15 days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. Architect will advise Contractor when a submittal being processed must be delayed for coordination. - 2. Intermediate Review: If intermediate submittal is necessary, process it in same manner as initial submittal. - 3. Resubmittal Review: Allow 15 days for review of each resubmittal. - E. Identification: Place a permanent label or title block on each submittal for identification. - 1. Indicate name of firm or entity that prepared each submittal on label or title block. - 2. Provide a space approximately 6 by 8 inches (150 by 200 mm) on label or beside title block to record Contractor's review and approval markings and action taken by Architect. - 3. Include the following information on label for processing and recording action taken: - a. Date. - b. Name of manufacturer. - c. Drawing number and detail references, as appropriate. - d. Location(s) where product is to be installed, as appropriate. - e. Other necessary identification. - F. Deviations: Highlight, encircle, or otherwise specifically identify deviations from the Contract Documents on submittals. - G. Additional Copies: Unless additional copies are required for final submittal, and unless Architect observes noncompliance with provisions in the Contract Documents, initial submittal may serve as final submittal. - Additional copies submitted for maintenance manuals will not be marked with action taken and will be returned. - For deferred design submittals on the pre-engineered metal building, provide sufficient quantity to allow for retention of copies by Architect, Engineer of Record, Structural Engineer, and Building Official - H. Transmittal: Package each submittal individually and appropriately for transmittal and handling. Transmit each submittal using a transmittal form. Architect will return submittals, without review, received from sources other than Contractor. - On an attached separate sheet, prepared on Contractor's letterhead, record relevant information, requests for data, revisions other than those requested by Architect on previous submittals, and deviations from requirements in the Contract Documents, including minor variations and limitations. Include same label information as related submittal. - I. Resubmittals: Make resubmittals in same form and number of copies as initial submittal. - 1. Note date and content of previous submittal. - 2. Note date and content of revision in label or title block and clearly indicate extent of revision. - 3. Resubmit submittals until they are marked "No Exception Taken" or "Make Correction Noted." - J. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities. Show distribution on transmittal forms. - K. Use for Construction: Use only final submittals with mark indicating "No Exception Taken" taken by Architect. ## 1.5 CONTRACTOR'S USE OF ARCHITECT'S CAD FILES - A. General: At Contractor's written request, copies of Architect's CAD files will be provided to Contractor for Contractor's use in connection with Project, subject to the following conditions: - 1. Contractor must sign a waiver releasing architect from liability related to use of CAD files by third parties. ## PART 2 - PRODUCTS ## 2.1 ACTION SUBMITTALS - A. General: Prepare and submit Action Submittals required by individual Specification Sections. - Where possible submit electronic submittals directly to FTP site specifically established for Project. Provide email notification of submittal. - B. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment. - 1. If information must be specially prepared for submittal because standard printed data are not suitable for use, submit as Shop Drawings, not as Product Data. - 2. Mark each copy of each submittal to show which products and options are applicable. - 3. Include the following information, as applicable: - a. Manufacturer's written recommendations. - b. Manufacturer's product specifications. - c. Manufacturer's installation instructions. - d. Standard color charts. - e. Manufacturer's catalog cuts. - f. Wiring diagrams showing factory-installed wiring. - g. Printed performance curves. - h. Operational range diagrams. - i. Mill reports. - j. Standard product operation and maintenance manuals. - k. Compliance with specified referenced standards. - I. Testing by recognized testing agency. - m. Application of testing agency labels and seals. - n. Notation of coordination requirements. - 4. Submit Product Data before or concurrent with Samples. - 5. Number of Copies: Submit six copies of Product Data to the Contractor. Contractor submits five copies to the Architect. Architect will return three copies. Mark up and retain one returned copy as a Project Record
Document. - C. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data, unless submittal based on Architect's CAD Drawings are otherwise permitted. - 1. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable: - a. Dimensions. - b. Identification of products. - c. Fabrication and installation drawings. - d. Roughing-in and setting diagrams. - e. Wiring diagrams showing field-installed wiring, including power, signal, and control wiring. - f. Shopwork manufacturing instructions. - g. Templates and patterns. - h. Schedules. - i. Design calculations. - j. Compliance with specified standards. - k. Notation of coordination requirements. - I. Notation of dimensions established by field measurement. - m. Relationship to adjoining construction clearly indicated. - n. Seal and signature of professional engineer if specified. - o. Wiring Diagrams: Differentiate between manufacturer-installed and field-installed wiring. - 2. Sheet Size: Except for templates, patterns, and similar full-size drawings, submit Shop Drawings on sheets at least 8-1/2 by 11 inches (215 by 280 mm) but no larger than 30 by 42 inches. - 3. Number of Copies: Submit six opaque copies of each submittal same to the Contractor. Contractor submits five copies to Architect. Architect will return three copies. - 4. Mark up and retain one returned copy as a Project Record Drawing. - D. Samples: Submit Samples for review of kind, color, pattern, and texture for a check of these characteristics with other elements and for a comparison of these characteristics between submittal and actual component as delivered and installed. - Transmit Samples that contain multiple, related components such as accessories together in one submittal package. - 2. Identification: Attach label on unexposed side of Samples that includes the following: - a. Generic description of Sample. - b. Product name and name of manufacturer. - c. Sample source. - d. Number and title of appropriate Specification Section. - 3. Disposition: Maintain sets of approved Samples at Project site, available for quality-control comparisons throughout the course of construction activity. Sample sets may be used to determine final acceptance of construction associated with each set. - a. Samples that may be incorporated into the Work are indicated in individual Specification Sections. Such Samples must be in an undamaged condition at time of use. - b. Samples not incorporated into the Work, or otherwise designated as Owner's property, are the property of Contractor. - 4. Samples for Initial Selection: Submit manufacturer's color charts consisting of units or sections of units showing the full range of colors, textures, and patterns available. - a. Number of Samples: Submit two full sets of available choices where color, pattern, texture, or similar characteristics are required to be selected from manufacturer's product line. Architect will return submittal with options selected. - 5. Samples for Verification: Submit full-size units or Samples of size indicated, prepared from same material to be used for the Work, cured and finished in manner specified, and physically identical with material or product proposed for use, and that show full range of color and texture variations expected. Samples include, but are not limited to, the following: partial sections of manufactured or fabricated components; small cuts or containers of materials; complete units of repetitively used materials; swatches showing color, texture, and pattern; color range sets; and components used for independent testing and inspection. - a. Number of Samples: Submit three sets of Samples. Architect will retain two Sample sets; remainder will be returned. Mark up and retain one returned Sample set as a Project Record Sample. - Submit a single Sample where assembly details, workmanship, fabrication techniques, connections, operation, and other similar characteristics are to be demonstrated. - If variation in color, pattern, texture, or other characteristic is inherent in material or product represented by a Sample, submit at least three sets of paired units that show approximate limits of variations. - E. Product Schedule or List: As required in individual Specification Sections, prepare a written summary indicating types of products required for the Work and their intended location. Include the following information in tabular form: - 1. Type of product. Include unique identifier for each product. - 2. Number and name of room or space. - 3. Location within room or space. - 4. Number of Copies: Submit six copies of product schedule or list, unless otherwise indicated. Contractor submits five copies to the Architect. Architect will return three copies. Mark up and retain one returned copy as a Project Record Document. Architect will return one copy. - Mark up and retain one returned copy as a Project Record Document. ## 2.2 INFORMATIONAL SUBMITTALS - A. General: Prepare and submit Informational Submittals required by other Specification Sections. - 1. Number of Copies: Submit three copies of each submittal to Contractor, unless otherwise indicated. Contractor will send two copies to the Architect. Architect will not return copies. - Certificates and Certifications: Provide a notarized statement that includes signature of entity responsible for preparing certification. Certificates and certifications shall be signed by an officer or other individual authorized to sign documents on behalf of that entity. - 3. Test and Inspection Reports: Comply with requirements specified in Division 01 Section "Quality Requirements." - B. Coordination Drawings: Comply with requirements specified in Division 01 Section "Project Management and Coordination." - C. Qualification Data: Prepare written information that demonstrates capabilities and experience of firm or person. Include lists of completed projects with project names and addresses, names and addresses of architects and owners, and other information specified. - D. Welding Certificates: Prepare written certification that welding procedures and personnel comply with requirements in the Contract Documents. Submit record of Welding Procedure Specification (WPS) and Procedure Qualification Record (PQR) on AWS forms. Include names of firms and personnel certified. - E. Installer Certificates: Prepare written statements on manufacturer's letterhead certifying that Installer complies with requirements in the Contract Documents and, where required, is authorized by manufacturer for this specific Project. - F. Manufacturer Certificates: Prepare written statements on manufacturer's letterhead certifying that manufacturer complies with requirements in the Contract Documents. Include evidence of manufacturing experience where required. - G. Product Certificates: Prepare written statements on manufacturer's letterhead certifying that product complies with requirements in the Contract Documents. - H. Material Certificates: Prepare written statements on manufacturer's letterhead certifying that material complies with requirements in the Contract Documents. - I. Material Test Reports: Prepare reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting test results of material for compliance with requirements in the Contract Documents. - J. Product Test Reports: Prepare written reports indicating current product produced by manufacturer complies with requirements in the Contract Documents. Base reports on evaluation of tests performed by manufacturer and witnessed by a qualified testing agency, or on comprehensive tests performed by a qualified testing agency. - K. Research/Evaluation Reports: Prepare written evidence, from a model code organization acceptable to authorities having jurisdiction, that product complies with building code in effect for Project. Include the following information: - 1. Name of evaluation organization. - 2. Date of evaluation. - 3. Time period when report is in effect. - 4. Product and manufacturers' names. - 5. Description of product. - 6. Test procedures and results. - Limitations of use. - L. Schedule of Tests and Inspections: Comply with requirements specified in Division 01 Section "Quality Requirements." - M. Preconstruction Test Reports: Prepare reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of tests performed before installation of product, for compliance with performance requirements in the Contract Documents. - N. Compatibility Test Reports: Prepare reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of compatibility tests performed before installation of product. Include written recommendations for primers and substrate preparation needed for adhesion. - O. Field Test Reports: Prepare reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of field tests performed either during installation of product or after product is installed in its final location, for compliance with requirements in the Contract Documents. - P. Maintenance Data: Prepare written and graphic instructions and procedures for operation and normal maintenance of products and equipment. Comply with requirements specified in Division 01 Section "Operation and Maintenance Data." - Q. Design Data: Prepare written and graphic information, including, but not limited to, performance and design criteria, list of applicable codes and regulations, and calculations. Include list of assumptions and other performance and design criteria and a summary of loads. Include load diagrams if applicable. Provide name and version of software, if any, used for calculations. Include page numbers. - R.
Manufacturer's Instructions: Prepare written or published information that documents manufacturer's recommendations, guidelines, and procedures for installing or operating a product or equipment. Include name of product and name, address, and telephone number of manufacturer. Include the following, as applicable: - 1. Preparation of substrates. - 2. Required substrate tolerances. - 3. Sequence of installation or erection. - 4. Required installation tolerances. - 5. Required adjustments. - 6. Recommendations for cleaning and protection. - S. Manufacturer's Field Reports: Prepare written information documenting factory-authorized service representative's tests and inspections. Include the following, as applicable: - 1. Name, address, and telephone number of factory-authorized service representative making report. - 2. Statement on condition of substrates and their acceptability for installation of product. - 3. Statement that products at Project site comply with requirements. - Summary of installation procedures being followed, whether they comply with requirements and, if not, what corrective action was taken. - 5. Results of operational and other tests and a statement of whether observed performance complies with requirements. - 6. Statement whether conditions, products, and installation will affect warranty. - 7. Other required items indicated in individual Specification Sections. - T. Insurance Certificates and Bonds: Prepare written information indicating current status of insurance or bonding coverage. Include name of entity covered by insurance or bond, limits of coverage, amounts of deductibles, if any, and term of the coverage. - U. Material Safety Data Sheets (MSDSs): Submit information directly to Owner; do not submit to Architect. - Architect will not review submittals that include MSDSs and will return the entire submittal for resubmittal. ## 2.3 DELEGATED DESIGN - A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated. - If criteria indicated are not sufficient to perform services or certification required, submit a written request for additional information to Architect. - B. Delegated-Design Submittal: In addition to Shop Drawings, Product Data, and other required submittals, submit six copies of a statement to contractor, signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional. Contractor will forward five copies to architect. - 1. Indicate that products and systems comply with performance and design criteria in the Contract Documents. Include list of codes, loads, and other factors used in performing these services. ## PART 3 - EXECUTION ## 3.1 CONTRACTOR'S REVIEW A. Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Architect. # 3.2 ARCHITECT'S ACTION - A. General: Architect will not review submittals that do not bear Contractor's approval stamp and will return them without action. - B. Action Submittals: Architect will review each submittal, make marks to indicate corrections or modifications required, and return it. Architect will stamp each submittal with an action stamp and will mark stamp appropriately to indicate action taken, as follows: - 1. No Exception Taken. Item is released for incorporation into the work as submitted. - 2. Make Corrections Noted. Minor corrections are required for incorporation into the work as submitted. No re-submittal required. - Rejected. Item does not meet the requirements of the specifications and will not be incorporated into the work. - 4. Submit Specified Item. Does not meet the requirements of the specifications and will not be incorporated into the work. - 5. Revise and Resubmit. Minor corrections are required for incorporation into the work pending resubmittal and review. - C. Informational Submittals: Architect will review each submittal and will not return it, or will return it if it does not comply with requirements. Architect will forward each submittal to appropriate party. - D. Partial submittals are not acceptable, will be considered nonresponsive, and will be returned without review. - E. Submittals not required by the Contract Documents may not be reviewed and may be discarded. END OF SECTION 013300 ## SECTION 014000 - QUALITY REQUIREMENTS ## PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section. ## 1.2 SUMMARY - A. This Section includes administrative and procedural requirements for quality assurance and quality control. - B. Testing and inspecting services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements. - Specific quality-assurance and -control requirements for individual construction activities are specified in the Sections that specify those activities. Requirements in those Sections may also cover production of standard products. - 2. Specified tests, inspections, and related actions do not limit Contractor's other quality-assurance and -control procedures that facilitate compliance with the Contract Document requirements. - 3. Requirements for Contractor to provide quality-assurance and -control services required by Architect, Owner, or authorities having jurisdiction are not limited by provisions of this Section. ## C. Related Sections include the following: - 1. Division 01 Section "Construction Progress Documentation" for developing a schedule of required tests and inspections. - 2. Division 01 Section "Cutting and Patching" for repair and restoration of construction disturbed by testing and inspecting activities. - 3. Divisions 02 through 49 Sections for specific test and inspection requirements. ## 1.3 DEFINITIONS - A. Quality-Assurance Services: Activities, actions, and procedures performed before and during execution of the Work to guard against defects and deficiencies and substantiate that proposed construction will comply with requirements. - B. Quality-Control Services: Tests, inspections, procedures, and related actions during and after execution of the Work to evaluate that actual products incorporated into the Work and completed construction comply with requirements. Services do not include contract enforcement activities performed by Architect. - C. Mockups: Full-size, physical assemblies that are constructed on-site. Mockups are used to verify selections made under sample submittals, to demonstrate aesthetic effects and, where indicated, qualities of materials and execution, and to review construction, coordination, testing, or operation; they are not Samples. Approved mockups establish the standard by which the Work will be judged. - D. Laboratory Mockups: Full-size, physical assemblies that are constructed at testing facility to verify performance characteristics. - E. Preconstruction Testing: Tests and inspections that are performed specifically for the Project before products and materials are incorporated into the Work to verify performance or compliance with specified criteria. - F. Product Testing: Tests and inspections that are performed by an NRTL, an NVLAP, or a testing agency qualified to conduct product testing and acceptable to authorities having jurisdiction, to establish product performance and compliance with industry standards. - G. Source Quality-Control Testing: Tests and inspections that are performed at the source, i.e., plant, mill, factory, or shop. - H. Field Quality-Control Testing: Tests and inspections that are performed on-site for installation of the Work and for completed Work. - I. Testing Agency: An entity engaged to perform specific tests, inspections, or both. Testing laboratory shall mean the same as testing agency. - J. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee, Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including installation, erection, application, and similar operations. - Using a term such as "carpentry" does not imply that certain construction activities must be performed by accredited or unionized individuals of a corresponding generic name, such as "carpenter." It also does not imply that requirements specified apply exclusively to tradespeople of the corresponding generic name. - K. Experienced: When used with an entity, "experienced" means having successfully completed a minimum of three previous projects similar in size and scope to this Project; being familiar with special requirements indicated; and having complied with requirements of authorities having jurisdiction. ## 1.4 CONFLICTING REQUIREMENTS - A. General: If compliance with two or more standards is specified and the standards establish different or conflicting requirements for minimum quantities or quality levels, comply with the most stringent requirement. Refer uncertainties and requirements that are different, but apparently equal, to Architect for a decision before proceeding. - B. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Architect for a decision
before proceeding. ## 1.5 SUBMITTALS - A. Qualification Data: For testing agencies specified in "Quality Assurance" Article to demonstrate their capabilities and experience. Include proof of qualifications in the form of a recent report on the inspection of the testing agency by a recognized authority. - B. Reports: Prepare and submit certified written reports that include the following: - 1. Date of issue. - 2. Project title and number. - 3. Name, address, and telephone number of testing agency. - 4. Dates and locations of samples and tests or inspections. - 5. Names of individuals making tests and inspections. - 6. Description of the Work and test and inspection method. - 7. Identification of product and Specification Section. - 8. Complete test or inspection data. - 9. Test and inspection results and an interpretation of test results. - 10. Record of temperature and weather conditions at time of sample taking and testing and inspecting. - 11. Comments or professional opinion on whether tested or inspected Work complies with the Contract Document requirements. - 12. Name and signature of laboratory inspector. - 13. Recommendations on retesting and reinspecting. - C. Permits, Licenses, and Certificates: For Owner's records, submit copies of permits, licenses, certifications, inspection reports, releases, jurisdictional settlements, notices, receipts for fee payments, judgments, correspondence, records, and similar documents, established for compliance with standards and regulations bearing on performance of the Work. ## 1.6 QUALITY ASSURANCE - A. General: Qualifications paragraphs in this Article establish the minimum qualification levels required; individual Specification Sections specify additional requirements. - B. Installer Qualifications: A firm or individual experienced in installing, erecting, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance. - C. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units. - D. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units. - E. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of the system, assembly, or product that are similar to those indicated for this Project in material, design, and extent. - F. Specialists: Certain sections of the Specifications require that specific construction activities shall be performed by entities who are recognized experts in those operations. Specialists shall satisfy qualification requirements indicated and shall be engaged for the activities indicated. - Requirement for specialists shall not supersede building codes and regulations governing the Work. - G. Testing Agency Qualifications: An NRTL, an NVLAP, or an independent agency with the experience and capability to conduct testing and inspecting indicated, as documented according to ASTM E 548; and with additional qualifications specified in individual Sections; and where required by authorities having jurisdiction, that is acceptable to authorities. - 1. NRTL: A nationally recognized testing laboratory according to 29 CFR 1910.7. - NVLAP: A testing agency accredited according to NIST's National Voluntary Laboratory Accreditation Program. - H. Factory-Authorized Service Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project. - I. Preconstruction Testing: Where testing agency is indicated to perform preconstruction testing for compliance with specified requirements for performance and test methods, comply with the following: - Contractor responsibilities include the following: - a. Provide test specimens representative of proposed products and construction. - b. Submit specimens in a timely manner with sufficient time for testing and analyzing results to prevent delaying the Work. - c. Provide sizes and configurations of test assemblies, mockups, and laboratory mockups to adequately demonstrate capability of products to comply with performance requirements. - d. Build site-assembled test assemblies and mockups using installers who will perform same tasks for Project. - e. Build laboratory mockups at testing facility using personnel, products, and methods of construction indicated for the completed Work. - f. When testing is complete, remove test specimens, assemblies, mockups, and laboratory mockups; do not reuse products on Project. - Testing Agency Responsibilities: Submit a certified written report of each test, inspection, and similar quality-assurance service to Architect, with copy to Contractor. Interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from the Contract Documents. ## 1.7 QUALITY CONTROL - A. Owner Responsibilities: Where quality-control services are indicated as Owner's responsibility, Owner will engage a qualified testing agency to perform these services. - 1. Owner will furnish Contractor with names, addresses, and telephone numbers of testing agencies engaged and a description of types of testing and inspecting they are engaged to perform. - Costs for retesting and reinspecting construction that replaces or is necessitated by work that failed to comply with the Contract Documents will be charged to Contractor. - 3. Where quality-control services are indicated as Contractor's responsibility, submit a certified written report, in duplicate, of each quality-control service. - 4. Testing and inspecting requested by Contractor and not required by the Contract Documents are Contractor's responsibility. - Submit additional copies of each written report directly to authorities having jurisdiction, when they so direct. - B. Manufacturer's Field Services: Where indicated, engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including service connections. Report results in writing as specified in Division 01 Section "Submittal Procedures." - C. Retesting/Reinspecting: Regardless of whether original tests or inspections were Contractor's responsibility, provide quality-control services, including retesting and reinspecting, for construction that replaced Work that failed to comply with the Contract Documents. - D. Testing Agency Responsibilities: Cooperate with Architectand Contractor in performance of duties. Provide qualified personnel to perform required tests and inspections. - 1. Notify Architect and Contractor promptly of irregularities or deficiencies observed in the Work during performance of its services. - 2. Determine the location from which test samples will be taken and in which in-situ tests are - 3. Conduct and interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from requirements. - 4. Submit a certified written report, in duplicate, of each test, inspection, and similar quality-control service through Contractor. - 5. Do not release, revoke, alter, or increase the Contract Document requirements or approve or accept any portion of the Work. - 6. Do not perform any duties of Contractor. - E. Associated Services: Cooperate with agencies performing required tests, inspections, and similar quality-control services, and provide reasonable auxiliary services as requested. Notify agency sufficiently in advance of operations to permit assignment of personnel. Provide the following: - 1. Access to the Work. - 2. Incidental labor and facilities necessary to facilitate tests and inspections. - Adequate quantities of representative samples of materials that require testing and inspecting. Assist agency in obtaining samples. - 4. Facilities for storage and field curing of test samples. - 5. Delivery of samples to testing agencies. - 6. Preliminary design mix proposed for use for material mixes that require control by testing agency. - 7. Security and protection for samples and for testing and inspecting equipment at Project site. - F. Coordination: Coordinate sequence of activities to accommodate required quality-assurance and -control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting. - 1. Schedule times for tests, inspections, obtaining samples, and similar activities. ## 1.8 SPECIAL TESTS AND INSPECTIONS - A. Special Tests and Inspections: Owner will engage a qualified testing agency/special inspector to conduct special tests and inspections required by authorities having jurisdiction as the responsibility of Owner, and as follows: - 1. Verifying that manufacturer maintains detailed fabrication and quality-control procedures and reviewing the completeness and adequacy of those procedures to perform the Work. - 2. Notifying Architect and Contractor promptly of irregularities and deficiencies observed in the Work during performance of its services. - 3. Submitting a certified written report of each test, inspection, and similar quality-control service to Architect with copy to Contractor and to authorities having jurisdiction. - 4. Submitting a final report of special tests and inspections at Substantial Completion, which includes a list of unresolved
deficiencies. - 5. Interpreting tests and inspections and stating in each report whether tested and inspected work complies with or deviates from the Contract Documents. - 6. Retesting and reinspecting corrected work. ## PART 2 - PRODUCTS (Not Used) #### PART 3 - EXECUTION # 3.1 TEST AND INSPECTION LOG - A. Prepare a record of tests and inspections. Include the following: - 1. Date test or inspection was conducted. - 2. Description of the Work tested or inspected. - 3. Date test or inspection results were transmitted to Architect. - 4. Identification of testing agency or special inspector conducting test or inspection. - B. Maintain log at Project site. Post changes and modifications as they occur. Provide access to test and inspection log for Architect's reference during normal working hours. ## 3.2 REPAIR AND PROTECTION A. General: On completion of testing, inspecting, sample taking, and similar services, repair damaged construction and restore substrates and finishes. - 1. Provide materials and comply with installation requirements specified in other Specification Sections. Restore patched areas and extend restoration into adjoining areas with durable seams that are as invisible as possible. - 2. Comply with the Contract Document requirements for Division 01 Section "Cutting and Patching." - B. Protect construction exposed by or for quality-control service activities. - C. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for quality-control services. END OF SECTION 014000 ## SECTION 014200 - REFERENCES ## PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section. ## 1.2 DEFINITIONS - A. General: Basic Contract definitions are included in the Conditions of the Contract. - B. "Approved": When used to convey Architect's action on Contractor's submittals, applications, and requests, "approved" is limited to Architect's duties and responsibilities as stated in the Conditions of the Contract. - C. "Directed": A command or instruction by Architect. Other terms including "requested," "authorized," "selected," "required," and "permitted" have the same meaning as "directed." - D. "Indicated": Requirements expressed by graphic representations or in written form on Drawings, in Specifications, and in other Contract Documents. Other terms including "shown," "noted," "scheduled," and "specified" have the same meaning as "indicated." - E. "Regulations": Laws, ordinances, statutes, and lawful orders issued by authorities having jurisdiction, and rules, conventions, and agreements within the construction industry that control performance of the Work. - F. "Furnish": Supply and deliver to Project site, ready for unloading, unpacking, assembly, installation, and similar operations. - G. "Install": Operations at Project site including unloading, temporarily storing, unpacking, assembling, erecting, placing, anchoring, applying, working to dimension, finishing, curing, protecting, cleaning, and similar operations. - H. "Provide": Furnish and install, complete and ready for the intended use. - "Project Site": Space available for performing construction activities. The extent of Project site is shown on Drawings and may or may not be identical with the description of the land on which Project is to be built. # 1.3 INDUSTRY STANDARDS - A. Applicability of Standards: Unless the Contract Documents include more stringent requirements, applicable construction industry standards have the same force and effect as if bound or copied directly into the Contract Documents to the extent referenced. Such standards are made a part of the Contract Documents by reference. - B. Publication Dates: Comply with standards in effect as of date of the Contract Documents unless otherwise indicated. - C. Copies of Standards: Each entity engaged in construction on Project should be familiar with industry standards applicable to its construction activity. Copies of applicable standards are not bound with the Contract Documents. - 1. Where copies of standards are needed to perform a required construction activity, obtain copies directly from publication source. - D. Abbreviations and Acronyms for Standards and Regulations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the organizations responsible for the standards and regulations in the following list. Names, telephone numbers, and Web sites are subject to change and are believed to be accurate and up-to-date as of the date of the Contract Documents. | ADAAG | Americans with Disabilities Act (ADA) Architectural Barriers Act (ABA) Accessibility Guidelines for Buildings and Facilities Available from Access Board www.access-board.gov | (800) 872-2253
(202) 272-0080 | |---------|---|----------------------------------| | CFR | Code of Federal Regulations
Available from Government Printing Office
www.gpoaccess.gov/cfr/index.html | (866) 512-1800
(202) 512-1800 | | DOD | Department of Defense Military Specifications and Standards
Available from Department of Defense Single Stock Point
http://dodssp.daps.dla.mil | (215) 697-6257 | | DSCC | Defense Supply Center Columbus (See FS) | | | FED-STD | Federal Standard
(See FS) | | | FS | Federal Specification
Available from Department of Defense Single Stock Point
http://dodssp.daps.dla.mil | (215) 697-6257 | | | Available from Defense Standardization Program www.dps.dla.mil | | | | Available from General Services Administration www.gsa.gov | (202) 619-8925 | | | Available from National Institute of Building Sciences www.nibs.org | (202) 289-7800 | | FTMS | Federal Test Method Standard (See FS) | | | MIL | (See MILSPEC) | | | MIL-STD | (See MILSPEC) | | | MILSPEC | Military Specification and Standards
Available from Department of Defense Single Stock Point
http://dodssp.daps.dla.mil | (215) 697-6257 | | UFAS | Uniform Federal Accessibility Standards
Available from Access Board
www.access-board.gov | (800) 872-2253
(202) 272-0080 | # 1.4 ABBREVIATIONS AND ACRONYMS - A. Industry Organizations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities indicated in Thomson Gale's "Encyclopedia of Associations" or in Columbia Books' "National Trade & Professional Associations of the U.S." - B. Code Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. Names, telephone numbers, and Web sites are subject to change and are believed to be accurate and up-to-date as of the date of the Contract Documents. | BOCA | BOCA International, Inc. (See ICC) | | |---------|--|----------------------------------| | IAPMO | International Association of Plumbing and Mechanical Officials www.iapmo.org | (909) 472-4100 | | ICBO | International Conference of Building Officials (See ICC) | | | ICBO ES | ICBO Evaluation Service, Inc.
(See ICC-ES) | | | ICC | International Code Council www.iccsafe.org | (888) 422-7233
(703) 931-4533 | | ICC-ES | ICC Evaluation Service, Inc. www.icc-es.org | (800) 423-6587
(562) 699-0543 | | SBCCI | Southern Building Code Congress International, Inc. (See ICC) | | C. Federal Government Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. Names, telephone numbers, and Web sites are subject to change and are believed to be accurate and up-to-date as of the date of the Contract Documents. | CE | Army Corps of Engineers www.usace.army.mil | | |------|--|----------------------------------| | CPSC | Consumer Product Safety Commission www.cpsc.gov | (800) 638-2772
(301) 504-7923 | | DOC | Department of Commerce www.commerce.gov | (202) 482-2000 | | DOD | Department of Defense
http://.dodssp.daps.dla.mil | (215) 697-6257 | | DOE | Department of Energy www.energy.gov | (202) 586-9220 | | EPA | Environmental Protection Agency www.epa.gov | (202) 272-0167 | | FAA | Federal Aviation Administration www.faa.gov | (866) 835-5322 | | FCC | Federal Communications Commission www.fcc.gov | (888) 225-5322 | | FDA | Food and Drug Administration www.fda.gov | (888) 463-6332 | | Organizati
B08-024 | onal Maintenance Shop Addition | Utah National Guard
DFCM # 8031480 | |-----------------------|--|---------------------------------------| | GSA | General Services Administration www.gsa.gov | (800) 488-3111 | | HUD | Department of Housing and Urban Development www.hud.gov | (202) 708-1112 | | LBL | Lawrence Berkeley National Laboratory www.lbl.gov | (510) 486-4000 | | NCHRP | National Cooperative Highway Research Program (See TRB) | | | NIST | National Institute of Standards and Technology www.nist.gov | (301) 975-6478 | | OSHA | Occupational Safety & Health Administration www.osha.gov | (800) 321-6742
(202) 693-1999 | | PBS | Public Building Service
(See GSA) | | | PHS | Office of Public Health and Science www.osophs.dhhs.gov/ophs | (202) 690-7694 | | RUS | Rural Utilities Service
(See USDA) |
(202) 720-9540 | | SD | State Department www.state.gov | (202) 647-4000 | | TRB | Transportation Research Board www.nas.edu/trb | (202) 334-2934 | | USDA | Department of Agriculture www.usda.gov | (202) 720-2791 | | USPS | Postal Service www.usps.com | (202) 268-2000 | | (
t | D. State Government Agencies: Where abbreviations and acronyms are used in Specifications or oth Contract Documents, they shall mean the recognized name of the entities in the following list. Name telephone numbers, and Web sites are subject to change and are believed to be accurate and up-to-da as of the date of the Contract Documents. | | | CBHF | State of California, Department of Consumer Affairs
Bureau of Home Furnishings and Thermal Insulation
www.dca.ca.gov/bhfti | (800) 952-5210
(916) 574-2041 | | CPUC | California Public Utilities Commission www.cpuc.ca.gov | (415) 703-2782 | | DFCM | Division of Facilities and Construction Management
State of Utah
www.dfcm.utah.gov | (801) 538-3287 | | TFS | Texas Forest Service Forest Resource Development http://txforestservice.tamu.edu | (936) 639-8180 | | | | | PART 2 - PRODUCTS (Not Used) Utah National Guard DFCM # 8031480 PART 3 - EXECUTION (Not Used) BLANK PAGE ## SECTION 015000 - TEMPORARY FACILITIES AND CONTROLS ### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY A. This Section includes requirements for temporary utilities, support facilities, and security and protection facilities. ## 1.3 DEFINITIONS A. Permanent Enclosure: As determined by Architect, permanent or temporary roofing is complete, insulated, and weathertight; exterior walls are insulated and weathertight; and all openings are closed with permanent construction or substantial temporary closures. ## 1.4 USE CHARGES A. General: Cost or use charges for temporary facilities shall be included in the Contract Sum. Allow other entities to use temporary services and facilities without cost, including, but not limited to, Owner's construction forces, Architect, testing agencies, and authorities having jurisdiction. ### 1.5 QUALITY ASSURANCE A. Tests and Inspections: Arrange for authorities having jurisdiction to test and inspect each temporary utility before use. Obtain required certifications and permits. ### 1.6 PROJECT CONDITIONS A. Temporary Use of Permanent Facilities: Installer of each permanent service shall assume responsibility for operation, maintenance, and protection of each permanent service during its use as a construction facility before Owner's acceptance, regardless of previously assigned responsibilities. #### PART 2 - PRODUCTS ### 2.1 TEMPORARY FACILITIES - A. Field Offices, General: Prefabricated or mobile units with serviceable finishes, temperature controls, and foundations adequate for normal loading. - B. Common-Use Field Office: Of sufficient size to accommodate needs of construction personnel. Keep office clean and orderly. Furnish and equip offices as required: - C. Storage and Fabrication Sheds: Provide sheds sized, furnished, and equipped to accommodate materials and equipment for construction operations. - 1. Store combustible materials apart from building. ## 2.2 EQUIPMENT - A. Fire Extinguishers: Portable, UL rated; with class and extinguishing agent as required by locations and classes of fire exposures. - B. HVAC Equipment: Provide vented, self-contained, liquid-propane-gas or fuel-oil heaters with individual space thermostatic control. - 1. Use of gasoline-burning space heaters, open-flame heaters, or salamander-type heating units is prohibited. - 2. Heating Units: Listed and labeled for type of fuel being consumed, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. - 3. Permanent HVAC System: If Owner authorizes use of permanent HVAC system for temporary use during construction, provide filter with MERV of 8 at each return air grille in system and remove at end of construction. #### PART 3 - EXECUTION ## 3.1 INSTALLATION, GENERAL - A. Locate facilities where they will serve Project adequately and result in minimum interference with performance of the Work. Relocate and modify facilities as required by progress of the Work. - B. Provide each facility ready for use when needed to avoid delay. Do not remove until facilities are no longer needed or are replaced by authorized use of completed permanent facilities. ### 3.2 TEMPORARY UTILITY INSTALLATION - A. General: Install temporary service or connect to existing service. - 1. Arrange with utility company, Owner, and existing users for time when service can be interrupted, if necessary, to make connections for temporary services. - B. Water Service: Install water service and distribution piping in sizes and pressures adequate for construction. - 1. Contractor may make limited use of existing water utilities available on-site. Coordinate with building users so as to avoid disruption of users' operations. Excessive or wasteful use of users' facilities will result in use charges to the contractor. - C. Sanitary Facilities: Provide temporary toilets, wash facilities, and drinking water for use of construction personnel. Comply with authorities having jurisdiction for type, number, location, operation, and maintenance of fixtures and facilities. - 1. Toilets: provide portable toilet facilities. - D. Heating: Provide temporary heating required by construction activities for curing or drying of completed installations or for protecting installed construction from adverse effects of low temperatures or high humidity. Select equipment that will not have a harmful effect on completed installations or elements being installed. - E. Ventilation and Humidity Control: Provide temporary ventilation required by construction activities for curing or drying of completed installations. Select equipment that will not have a harmful effect on completed installations or elements being installed. Coordinate ventilation requirements to produce ambient condition required and minimize energy consumption. - F. Electric Power Service: Provide electric power service and distribution system of sufficient size, capacity, and power characteristics required for construction operations. - Contractor may make limited use of available electrical service in existing building. Coordinate with building users so as to avoid disruption of users' operations. - G. Lighting: Provide temporary lighting with local switching that provides adequate illumination for construction operations, observations, inspections, and traffic conditions. - 1. Install and operate temporary lighting that fulfills security and protection requirements without operating entire system. - H. Telephone Service: Provide temporary telephone service in common-use facilities for use by all construction personnel. Install one telephone line(s) for each field office. - 1. Provide additional telephone lines for the following: - a. Provide a dedicated telephone line for each facsimile machine and computer in each field office. - 2. At each telephone, post a list of important telephone numbers. - Police and fire departments. - b. Ambulance service. - c. Contractor's home office. - d. Architect's office. - e. Engineers' offices. - f. Principal subcontractors' field and home offices. - 3. Provide superintendent with cellular telephone for use when away from field office. ## 3.3 SUPPORT FACILITIES INSTALLATION - A. General: Comply with the following: - 1. Provide incombustible construction for offices, shops, and sheds located within construction area or within 30 feet (9 m) of building lines. Comply with NFPA 241. - 2. Maintain support facilities until near Substantial Completion. Remove before Substantial Completion. Personnel remaining after Substantial Completion will be permitted to use permanent facilities, under conditions acceptable to Owner. - B. Traffic Controls: Comply with requirements of authorities having jurisdiction. - 1. Protect existing site improvements to remain including curbs, pavement, and utilities. - 2. Maintain access for fire-fighting equipment and access to fire hydrants. - C. Dewatering Facilities and Drains: Comply with requirements of authorities having jurisdiction. Maintain Project site, excavations, and construction free of water. - 1. Dispose of rainwater in a lawful manner that will not result in flooding Project or adjoining properties nor endanger permanent Work or temporary facilities. - 2. Remove snow and ice as required to minimize accumulations. - D. Project Identification and Temporary Signs: Provide Project identification and other signs as required. Install signs where agreed to inform public and individuals seeking entrance to Project. Unauthorized signs are not permitted. - 1. Provide temporary, directional signs for construction personnel and visitors. - 2. Maintain and touchup signs so they are legible at all times. - E. Waste Disposal Facilities: Comply with requirements specified in Division 01 Section "Construction Waste Management and Disposal." - F. Lifts and Hoists: Provide facilities necessary for hoisting materials and personnel. - Truck cranes and similar devices used for hoisting materials are considered "tools and equipment" and not temporary facilities. - G. Truck/Vehicle Clean-Off: Provide a truck track-off/wash-off area or pad. Contractor is responsible to keep the access routes and streets cleaned and for traffic control. ### 3.4 SECURITY AND PROTECTION FACILITIES INSTALLATION - A. Environmental Protection: Provide protection, operate temporary facilities, and conduct construction in ways and by methods that comply with environmental regulations and that minimize possible air, waterway, and subsoil contamination or pollution or other undesirable effects. - 1. Comply with work restrictions specified in Division 01 Section
"Summary." - B. Temporary Erosion and Sedimentation Control: Provide measures to prevent soil erosion and discharge of soil-bearing water runoff and airborne dust to adjacent properties and walkways, according to requirements of authorities having jurisdiction and the project Storm Water Pollution Prevention Plan (SWPPP). - 1. Contractor is solely responsible to provide documentation required, if any, to demonstrate that a SWPPP is not required for this work. If a SWPPP is required, contractor is solely responsible, at no additional cost to Owner, to obtain and provide all engineering, professional, and construction services and materials required to create and implement the SWPPP. - 2. Inspect, repair, and maintain erosion- and sedimentation-control measures during construction until permanent vegetation has been established. - C. Stormwater Control: Comply with authorities having jurisdiction. Provide barriers in and around excavations and subgrade construction to prevent flooding by runoff of stormwater from heavy rains. - D. Pest Control: Engage pest-control service as needed to recommend practices to minimize attraction and harboring of rodents, roaches, and other pests and to perform extermination and control procedures at regular intervals so Project will be free of pests and their residues at Substantial Completion. Obtain extended warranty for Owner. Perform control operations lawfully, using environmentally safe materials. - E. Site Enclosure Fence: Before construction operations begin, furnish and install site enclosure fence in a manner that will prevent people and animals from easily entering site except by entrance gates. - 1. Extent of Fence: As required to enclose entire Project site or portion determined sufficient to accommodate construction operations. - 2. Maintain security by limiting number of keys and restricting distribution to authorized personnel. Provide Owner with one set of keys. - 3. Coordinate fencing requirements with Owner for compliance with Prison security standards. - F. Security Enclosure and Lockup: Install substantial temporary enclosure around partially completed areas of construction. Provide lockable entrances to prevent unauthorized entrance, vandalism, theft, and similar violations of security. - G. Barricades, Warning Signs, and Lights: Comply with requirements of authorities having jurisdiction for erecting structurally adequate barricades, including warning signs and lighting. - H. Temporary Enclosures: Provide temporary enclosures for protection of construction, in progress and completed, from exposure, foul weather, other construction operations, and similar activities. Provide temporary weathertight enclosure for building exterior. - Where heating or cooling is needed and permanent enclosure is not complete, insulate temporary enclosures. - I. Temporary Partitions: Provide floor-to-ceiling dustproof partitions to limit dust and dirt migration from inprocess areas of work to those which have been previously completed. - Construct dustproof partitions with 2 layers of 3-mil (0.07-mm) polyethylene sheet on each side. Cover floor with 2 layers of 3-mil (0.07-mm) polyethylene sheet, extending sheets 18 inches (460 mm) up the sidewalls. Overlap and tape full length of joints. Cover floor with fire-retardant plywood. - a. Construct vestibule and airlock at each entrance through temporary partition with not less than 48 inches (1219 mm) between doors. Maintain water-dampened foot mats in vestibule. - 2. Insulate partitions to provide noise protection to occupied areas. - 3. Seal joints and perimeter. Equip partitions with dustproof doors and security locks. - 4. Protect air-handling equipment. - 5. Weather strip openings. - 6. Provide walk-off mats at each entrance through temporary partition. - J. Temporary Fire Protection: Install and maintain temporary fire-protection facilities of types needed to protect against reasonably predictable and controllable fire losses. Comply with NFPA 241. - 1. Prohibit smoking in hazardous fire-exposure areas. - 2. Supervise welding operations, combustion-type temporary heating units, and similar sources of fire ignition according to requirements of authorities having jurisdiction. - 3. Develop and supervise an overall fire-prevention and -protection program for personnel at Project site. Review needs with local fire department and establish procedures to be followed. Instruct personnel in methods and procedures. Post warnings and information. - 4. Provide temporary standpipes and hoses for fire protection. Hang hoses with a warning sign stating that hoses are for fire-protection purposes only and are not to be removed. Match hose size with outlet size and equip with suitable nozzles. ## 3.5 OPERATION, TERMINATION, AND REMOVAL - A. Supervision: Enforce strict discipline in use of temporary facilities. To minimize waste and abuse, limit availability of temporary facilities to essential and intended uses. - B. Maintenance: Maintain facilities in good operating condition until removal. - 1. Maintain operation of temporary enclosures, heating, cooling, humidity control, ventilation, and similar facilities on a 24-hour basis where required to achieve indicated results and to avoid possibility of damage. - C. Temporary Facility Changeover: Do not change over from using temporary security and protection facilities to permanent facilities until Substantial Completion. - D. Termination and Removal: Remove each temporary facility when need for its service has ended, when it has been replaced by authorized use of a permanent facility, or no later than Substantial Completion. Complete or, if necessary, restore permanent construction that may have been delayed because of interference with temporary facility. Repair damaged Work, clean exposed surfaces, and replace construction that cannot be satisfactorily repaired. - 1. Materials and facilities that constitute temporary facilities are property of Contractor. Owner reserves right to take possession of Project identification signs. - 2. At Substantial Completion, clean and renovate permanent facilities used during construction period. Comply with final cleaning requirements specified in Division 01 Section "Closeout Procedures." ## SECTION 016000 - PRODUCT REQUIREMENTS ### PART 1 - GENERAL ### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY - A. This Section includes administrative and procedural requirements for selection of products for use in Project; product delivery, storage, and handling; manufacturers' standard warranties on products; special warranties; product substitutions; and comparable products. - B. Related Sections include the following: - 1. Division 01 Section "References" for applicable industry standards for products specified. - 2. Division 01 Section "Closeout Procedures" for submitting warranties for Contract closeout. - 3. Divisions 02 through 33 Sections for specific requirements for warranties on products and installations specified to be warranted. #### 1.3 DEFINITIONS - A. Products: Items purchased for incorporating into the Work, whether purchased for Project or taken from previously purchased stock. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent. - Named Products: Items identified by manufacturer's product name, including make or model number or other designation shown or listed in manufacturer's published product literature, that is current as of date of the Contract Documents. - New Products: Items that have not previously been incorporated into another project or facility, except that products consisting of recycled-content materials are allowed, unless explicitly stated otherwise. Products salvaged or recycled from other projects are not considered new products. - Comparable Product: Product that is demonstrated and approved through submittal process, or where indicated as a product substitution, to have the indicated qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics that equal or exceed those of specified product. - B. Substitutions: Changes in products, materials, equipment, and methods of construction from those required by the Contract Documents and proposed by Contractor. - C. Basis-of-Design Product Specification: Where a specific manufacturer's product is named and accompanied by the words "basis of design," including make or model number or other designation, to establish the significant qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics for purposes of evaluating comparable products of other named manufacturers. ## 1.4 SUBMITTALS - A. Substitution Requests: Submit three copies of each request for consideration. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles. - 1. Substitution Request Form: Use form providing all information required by this section. - 2. Documentation: Show compliance with requirements for substitutions and the following, as applicable: - Statement indicating why specified material or product cannot be provided. - b. Coordination information, including a list of changes or modifications needed to other parts of the Work and to construction performed by Owner and separate contractors, that will be necessary to accommodate proposed substitution. - c. Detailed comparison of significant qualities of proposed substitution with those of the Work specified. Significant qualities may include attributes such as performance, weight, size, durability, visual effect, and specific features and requirements indicated. - d. Product Data, including drawings and descriptions of products
and fabrication and installation procedures. - e. Samples, where applicable or requested. - f. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners. - g. Material test reports from a qualified testing agency indicating and interpreting test results for compliance with requirements indicated. - h. Research/evaluation reports evidencing compliance with building code in effect for Project, from a model code organization acceptable to authorities having jurisdiction. - i. Detailed comparison of Contractor's Construction Schedule using proposed substitution with products specified for the Work, including effect on the overall Contract Time. If specified product or method of construction cannot be provided within the Contract Time, include letter from manufacturer, on manufacturer's letterhead, stating lack of availability or delays in delivery. - j. Cost information, including a proposal of change, if any, in the Contract Sum. - k. Contractor's certification that proposed substitution complies with requirements in the Contract Documents and is appropriate for applications indicated. - I. Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of failure of proposed substitution to produce indicated results. - 3. Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within 7 days of receipt of a request for substitution. Architect will notify Contractor of acceptance or rejection of proposed substitution within 15 days of receipt of request, or 7 days of receipt of additional information or documentation, whichever is later. - Form of Acceptance: Change Order (or addendum if request occurs before subcontractor bids are due). - b. Use product specified if Architect cannot make a decision on use of a proposed substitution within time allocated. - B. Comparable Product Requests: Submit three copies of each request for consideration. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles. - Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within one week of receipt of a comparable product request. Architect will notify Contractor of approval or rejection of proposed comparable product request within 15 days of receipt of request, or 7 days of receipt of additional information or documentation, whichever is later. - a. Form of Approval: As specified in Division 01 Section "Submittal Procedures." - b. Use product specified if Architect cannot make a decision on use of a comparable product request within time allocated. - C. Basis-of-Design Product Specification Submittal: Comply with requirements in Division 01 Section "Submittal Procedures." Show compliance with requirements. ### 1.5 QUALITY ASSURANCE A. Compatibility of Options: If Contractor is given option of selecting between two or more products for use on Project, product selected shall be compatible with products previously selected, even if previously selected products were also options. ## 1.6 PRODUCT DELIVERY, STORAGE, AND HANDLING A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft. Comply with manufacturer's written instructions. ## B. Delivery and Handling: - 1. Schedule delivery to minimize long-term storage at Project site and to prevent overcrowding of construction spaces. - 2. Coordinate delivery with installation time to ensure minimum holding time for items that are flammable, hazardous, easily damaged, or sensitive to deterioration, theft, and other losses. - 3. Deliver products to Project site in an undamaged condition in manufacturer's original sealed container or other packaging system, complete with labels and instructions for handling, storing, unpacking, protecting, and installing. - 4. Inspect products on delivery to ensure compliance with the Contract Documents and to ensure that products are undamaged and properly protected. ## C. Storage: - 1. Store products to allow for inspection and measurement of quantity or counting of units. - 2. Store materials in a manner that will not endanger Project structure. - 3. Store products that are subject to damage by the elements, under cover in a weathertight enclosure above ground, with ventilation adequate to prevent condensation. - 4. Store cementitious products and materials on elevated platforms. - 5. Store foam plastic from exposure to sunlight, except to extent necessary for period of installation and concealment. - 6. Comply with product manufacturer's written instructions for temperature, humidity, ventilation, and weather-protection requirements for storage. - 7. Protect stored products from damage and liquids from freezing. ### 1.7 PRODUCT WARRANTIES - A. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents. - 1. Manufacturer's Warranty: Preprinted written warranty published by individual manufacturer for a particular product and specifically endorsed by manufacturer to Owner. - 2. Special Warranty: Written warranty required by or incorporated into the Contract Documents, either to extend time limit provided by manufacturer's warranty or to provide more rights for Owner. - B. Special Warranties: Prepare a written document that contains appropriate terms and identification, ready for execution. Submit a draft for approval before final execution. - 1. Manufacturer's Standard Form: Modified to include Project-specific information and properly executed. - 2. Refer to Divisions 02 through 33 Sections for specific content requirements and particular requirements for submitting special warranties. - C. Submittal Time: Comply with requirements in Division 01 Section "Closeout Procedures." ### PART 2 - PRODUCTS ### 2.1 PRODUCT SELECTION PROCEDURES - A. General Product Requirements: Provide products that comply with the Contract Documents, that are undamaged and, unless otherwise indicated, that are new at time of installation. - 1. Provide products complete with accessories, trim, finish, fasteners, and other items needed for a complete installation and indicated use and effect. - 2. Standard Products: If available, and unless custom products or nonstandard options are specified, provide standard products of types that have been produced and used successfully in similar situations on other projects. - 3. Owner reserves the right to limit selection to products with warranties not in conflict with requirements of the Contract Documents. - 4. Where products are accompanied by the term "as selected," Architect will make selection. - 5. Where products are accompanied by the term "match sample," sample to be matched is Architect's. - 6. Descriptive, performance, and reference standard requirements in the Specifications establish "salient characteristics" of products. - 7. Or Equal: Where products are specified by name and accompanied by the term "or equal" or "or approved equal" or "or approved," comply with provisions in Part 2 "Comparable Products" Article to obtain approval for use of an unnamed product. # B. Product Selection Procedures: - Available Products: Where Specifications include a list of names of both products and manufacturers, provide one of the products listed, or an unnamed product, that complies with requirements. Comply with provisions in Part 2 "Comparable Products" Article for consideration of an unnamed product. - Available Manufacturers: Where Specifications include a list of manufacturers, provide a product by one of the manufacturers listed, or an unnamed manufacturer, that complies with requirements. Comply with provisions in Part 2 "Comparable Products" Article for consideration of an unnamed product. - 3. Basis-of-Design Product: Where Specifications name a product and include a list of manufacturers, provide the specified product or a comparable product by one of the other named manufacturers. Drawings and Specifications indicate sizes, profiles, dimensions, and other characteristics that are based on the product named. Comply with provisions in Part 2 "Comparable Products" Article for consideration of an unnamed product by the other named manufacturers. - 4. Visual Matching Specification: Where Specifications require matching an established Sample, select a product that complies with requirements and matches Architect's sample. Architect's decision will be final on whether a proposed product matches. - If no product available within specified category matches and complies with other specified requirements, comply with provisions in Part 2 "Product Substitutions" Article for proposal of product. - Visual Selection Specification: Where Specifications include the phrase "as selected from manufacturer's colors, patterns, textures" or a similar phrase, select a product that complies with other specified requirements. - a. Standard Range: Where Specifications include the phrase "standard range of colors, patterns, textures" or similar phrase, Architect will select color, pattern, density, or texture from manufacturer's product line that does not include premium items. - b. Full Range: Where Specifications include the phrase "full range of colors, patterns, textures" or similar phrase, Architect will select color, pattern, density, or texture from manufacturer's product line that includes both standard and premium items. ### 2.2 PRODUCT SUBSTITUTIONS - A. Timing: Architect will consider requests for substitution if received within 30 days after subcontractor bids are due on a specific work package. Requests received after that
time may be considered or rejected at discretion of Architect. - B. Conditions: Architect will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Architect will return requests without action, except to record noncompliance with these requirements: - Requested substitution offers Owner a substantial advantage in cost, time, energy conservation, or other considerations, after deducting additional responsibilities Owner must assume. Owner's additional responsibilities may include compensation to Architect for redesign and evaluation services, increased cost of other construction by Owner, and similar considerations. - 2. Requested substitution does not require extensive revisions to the Contract Documents. - Requested substitution is consistent with the Contract Documents and will produce indicated results. - 4. Substitution request is fully documented and properly submitted. - 5. Requested substitution will not adversely affect Contractor's Construction Schedule. - 6. Requested substitution has received necessary approvals of authorities having jurisdiction. - 7. Requested substitution is compatible with other portions of the Work. - 8. Requested substitution has been coordinated with other portions of the Work. - 9. Requested substitution provides specified warranty. #### 2.3 COMPARABLE PRODUCTS - A. Conditions: Architect will consider Contractor's request for comparable product when the following conditions are satisfied. If the following conditions are not satisfied, Architect will return requests without action, except to record noncompliance with these requirements: - 1. Evidence that the proposed product does not require extensive revisions to the Contract Documents, that it is consistent with the Contract Documents and will produce the indicated results, and that it is compatible with other portions of the Work. - 2. Detailed comparison of significant qualities of proposed product with those named in the Specifications. Significant qualities include attributes such as performance, weight, size, durability, visual effect, and specific features and requirements indicated. - 3. Evidence that proposed product provides specified warranty. - List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners, if requested. - 5. Samples, if requested. PART 3 - EXECUTION (Not Used) BLANK PAGE ### SECTION 017300 - EXECUTION #### PART 1 - GENERAL ### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY - A. This Section includes general procedural requirements governing execution of the Work including, but not limited to, the following: - 1. Construction layout. - 2. Field engineering and surveying. - 3. General installation of products. - 4. Progress cleaning. - 5. Starting and adjusting. - 6. Protection of installed construction. - 7. Correction of the Work. - B. Related Sections include the following: - 1. Division 01 Section "Project Management and Coordination" for procedures for coordinating field engineering with other construction activities. - 2. Division 01 Section "Submittal Procedures" for submitting surveys. - 3. Division 01 Section "Cutting and Patching" for procedural requirements for cutting and patching necessary for the installation or performance of other components of the Work. - 4. Division 01 Section "Closeout Procedures" for submitting final property survey with Project Record Documents, recording of Owner-accepted deviations from indicated lines and levels, and final cleaning. # 1.3 SUBMITTALS - A. Qualification Data: For land surveyor. - B. Landfill Receipts: Submit copy of receipts issued by a landfill facility, licensed to accept hazardous materials, for hazardous waste disposal. ## 1.4 QUALITY ASSURANCE A. Land Surveyor Qualifications: A professional land surveyor who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing land-surveying services of the kind indicated. PART 2 - PRODUCTS (Not Used) PART 3 - EXECUTION ### 3.1 EXAMINATION - A. Existing Conditions: The existence and location of site improvements, utilities, and other construction indicated as existing are not guaranteed. Before beginning work, investigate and verify the existence and location of mechanical and electrical systems and other construction affecting the Work. - 1. Before construction, verify the location and points of connection of utility services. - B. Existing Utilities: The existence and location of underground and other utilities and construction indicated as existing are not guaranteed. Before beginning sitework, investigate and verify the existence and location of underground utilities and other construction affecting the Work. - 1. Before construction, verify the location and invert elevation at points of connection of sanitary sewer, storm sewer, and water-service piping; and underground electrical services. - 2. Furnish location data for work related to Project that must be performed by public utilities serving Project site. - C. Acceptance of Conditions: Examine substrates, areas, and conditions, with Installer or Applicator present where indicated, for compliance with requirements for installation tolerances and other conditions affecting performance. Record observations. - Verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers. - 2. Examine roughing-in for mechanical and electrical systems to verify actual locations of connections before equipment and fixture installation. - Examine walls, floors, and roofs for suitable conditions where products and systems are to be installed. - 4. Proceed with installation only after unsatisfactory conditions have been corrected. Proceeding with the Work indicates acceptance of surfaces and conditions. ## 3.2 PREPARATION - A. Existing Utility Information: Furnish information to local utility and Owner that is necessary to adjust, move, or relocate existing utility structures, utility poles, lines, services, or other utility appurtenances located in or affected by construction. Coordinate with authorities having jurisdiction. - B. Field Measurements: Take field measurements as required to fit the Work properly. Recheck measurements before installing each product. Where portions of the Work are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication. Coordinate fabrication schedule with construction progress to avoid delaying the Work. - C. Space Requirements: Verify space requirements and dimensions of items shown diagrammatically on Drawings. - D. Review of Contract Documents and Field Conditions: Immediately on discovery of the need for clarification of the Contract Documents, submit a request for information to Architect. Include a detailed description of problem encountered, together with recommendations for changing the Contract Documents. ## 3.3 CONSTRUCTION LAYOUT - A. Verification: Before proceeding to lay out the Work, verify layout information shown on Drawings, in relation to the property survey and existing benchmarks. If discrepancies are discovered, notify Architect promptly. - B. General: Engage a land surveyor to lay out the Work using accepted surveying practices. - 1. Establish benchmarks and control points to set lines and levels at each story of construction and elsewhere as needed to locate each element of Project. - Establish dimensions within tolerances indicated. Do not scale Drawings to obtain required dimensions. - 3. Inform installers of lines and levels to which they must comply. - 4. Check the location, level and plumb, of every major element as the Work progresses. - 5. Notify Architect when deviations from required lines and levels exceed allowable tolerances. - 6. Close site surveys with an error of closure equal to or less than the standard established by authorities having jurisdiction. - C. Site Improvements: Locate and lay out site improvements, including pavements, grading, fill and topsoil placement, utility slopes, and invert elevations. - D. Building Lines and Levels: Locate and lay out control lines and levels for structures, building foundations, column grids, and floor levels, including those required for mechanical and electrical work. Transfer survey markings and elevations for use with control lines and levels. Level foundations and piers from two or more locations. - E. Record Log: Maintain a log of layout control work. Record deviations from required lines and levels. Include beginning and ending dates and times of surveys, weather conditions, name and duty of each survey party member, and types of instruments and tapes used. Make the log available for reference by Architect. #### 3.4 FIELD ENGINEERING - A. Reference Points: Locate existing permanent benchmarks, control points, and similar reference points before beginning the Work. Preserve and protect permanent benchmarks and control points during construction operations. - 1. Do not change or relocate existing benchmarks or control points without prior written approval of Architect. Report lost or destroyed permanent benchmarks or control points promptly. Report the need to relocate permanent benchmarks or control points to Architect before proceeding. - Replace lost or destroyed permanent benchmarks and control points promptly. Base replacements on the original survey control points. - B. Benchmarks: Establish and maintain a minimum of two permanent benchmarks on Project site, referenced to data established by survey control points. Comply with authorities having jurisdiction for type and size of benchmark. - 1. Record benchmark locations, with horizontal and vertical data, on Project
Record Documents. - 2. Where the actual location or elevation of layout points cannot be marked, provide temporary reference points sufficient to locate the Work. - 3. Remove temporary reference points when no longer needed. Restore marked construction to its original condition. ### 3.5 INSTALLATION - General: Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated. - 1. Make vertical work plumb and make horizontal work level. - 2. Where space is limited, install components to maximize space available for maintenance and ease of removal for replacement. - 3. Conceal pipes, ducts, and wiring in finished areas, unless otherwise indicated. - 4. Maintain minimum headroom clearance of 8 feet (2.4 m) in spaces without a suspended ceiling. - B. Comply with manufacturer's written instructions and recommendations for installing products in applications indicated. - C. Install products at the time and under conditions that will ensure the best possible results. Maintain conditions required for product performance until Substantial Completion. - D. Conduct construction operations so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy. - E. Templates: Obtain and distribute to the parties involved templates for work specified to be factory prepared and field installed. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing products to comply with indicated requirements. - F. Anchors and Fasteners: Provide anchors and fasteners as required to anchor each component securely in place, accurately located and aligned with other portions of the Work. - Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Architect. - 2. Allow for building movement, including thermal expansion and contraction. - Coordinate installation of anchorages. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation. - G. Joints: Make joints of uniform width. Where joint locations in exposed work are not indicated, arrange joints for the best visual effect. Fit exposed connections together to form hairline joints. - H. Hazardous Materials: Use products, cleaners, and installation materials that are not considered hazardous. ### 3.6 PROGRESS CLEANING - A. General: Clean Project site and work areas daily, including common areas. Coordinate progress cleaning for joint-use areas where more than one installer has worked. Enforce requirements strictly. Dispose of materials lawfully. - 1. Comply with requirements in NFPA 241 for removal of combustible waste materials and debris. - 2. Containerize hazardous and unsanitary waste materials separately from other waste. Mark containers appropriately and dispose of legally, according to regulations. - B. Site: Maintain Project site free of waste materials and debris. - C. Work Areas: Clean areas where work is in progress to the level of cleanliness necessary for proper execution of the Work. - 1. Remove liquid spills promptly. - 2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate. - D. Installed Work: Keep installed work clean. Clean installed surfaces according to written instructions of manufacturer or fabricator of product installed, using only cleaning materials specifically recommended. If specific cleaning materials are not recommended, use-cleaning materials that are not hazardous to health or property and that will not damage exposed surfaces. - E. Concealed Spaces: Remove debris from concealed spaces before enclosing the space. - F. Exposed Surfaces in Finished Areas: Clean exposed surfaces and protect as necessary to ensure freedom from damage and deterioration at time of Substantial Completion. - G. Waste Disposal: Burying or burning waste materials on-site will not be permitted. Washing waste materials down sewers or into waterways will not be permitted. - H. During handling and installation, clean and protect construction in progress and adjoining materials already in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion. - Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects. - J. Limiting Exposures: Supervise construction operations to assure that no part of the construction, completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period. #### 3.7 STARTING AND ADJUSTING - A. Start equipment and operating components to confirm proper operation. Remove malfunctioning units, replace with new units, and retest. - B. Adjust operating components for proper operation without binding. Adjust equipment for proper operation. - C. Test each piece of equipment to verify proper operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment. - D. Manufacturer's Field Service: If a factory-authorized service representative is required to inspect field-assembled components and equipment installation, comply with qualification requirements in Division 01 Section "Quality Requirements." ### 3.8 PROTECTION OF INSTALLED CONSTRUCTION - A. Provide final protection and maintain conditions that ensure installed Work is without damage or deterioration at time of Substantial Completion. - B. Comply with manufacturer's written instructions for temperature and relative humidity. ## 3.9 CORRECTION OF THE WORK - A. Repair or remove and replace defective construction. Restore damaged substrates and finishes. Comply with requirements in Division 01 Section "Cutting and Patching." - 1. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment. - B. Restore permanent facilities used during construction to their specified condition. - C. Remove and replace damaged surfaces that are exposed to view if surfaces cannot be repaired without visible evidence of repair. - D. Repair components that do not operate properly. Remove and replace operating components that cannot be repaired. - E. Remove and replace chipped, scratched, and broken glass or reflective surfaces. Utah National Guard DFCM # 8031480 ## SECTION 017329 - CUTTING AND PATCHING ### PART 1 - GENERAL ### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY - A. This Section includes procedural requirements for cutting and patching. - B. Related Sections include the following: - 1. Divisions 02 through 33 Sections for specific requirements and limitations applicable to cutting and patching individual parts of the Work. ### 1.3 DEFINITIONS - A. Cutting: Removal of in-place construction necessary to permit installation or performance of other Work. - B. Patching: Fitting and repair work required to restore surfaces to original conditions after installation of other Work. ## 1.4 QUALITY ASSURANCE - A. Structural Elements: Do not cut and patch structural elements in a manner that could change their load-carrying capacity or load-deflection ratio. - B. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety. Operating elements include the following: - 1. Primary operational systems and equipment. - 2. Air or smoke barriers. - 3. Fire-suppression systems. - 4. Mechanical systems piping and ducts. - 5. Control systems. - 6. Communication systems. - 7. Conveying systems. - 8. Electrical wiring systems. - C. Miscellaneous Elements: Do not cut and patch miscellaneous elements or related components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety. Miscellaneous elements include the following: - 1. Water, moisture, or vapor barriers. - 2. Membranes and flashings. - 3. Exterior curtain-wall construction. - 4. Equipment supports. - 5. Piping, ductwork, vessels, and equipment. - 6. Noise- and vibration-control elements and systems. - D. Visual Requirements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch construction exposed on the exterior or in occupied spaces in a manner that would, in Architect's opinion, reduce the building's aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner. ### PART 2 - PRODUCTS ### 2.1 MATERIALS - A. General: Comply with requirements specified in other Sections. - B. In-Place Materials: Use materials identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible. - If identical materials are unavailable or cannot be used, use materials that, when installed, will match the visual and functional performance of in-place materials. ### PART 3 - EXECUTION #### 3.1 EXAMINATION - A. Examine surfaces to be cut and patched and conditions under which cutting and patching are to be performed. - 1. Compatibility: Before patching, verify compatibility with and suitability of substrates, including compatibility with in-place finishes or
primers. - 2. Proceed with installation only after unsafe or unsatisfactory conditions have been corrected. ## 3.2 PREPARATION - A. Temporary Support: Provide temporary support of Work to be cut. - B. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations. - Adjoining Areas: Avoid interference with use of adjoining areas or interruption of free passage to adjoining areas. - D. Existing Utility Services and Mechanical/Electrical Systems: Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to prevent interruption to occupied areas. ### 3.3 PERFORMANCE A. General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay. - 1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition. - B. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations. - 1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots as small as possible, neatly to size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use. - 2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces. - Concrete or Masonry: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill. - 4. Excavating and Backfilling: Comply with requirements in applicable Division 31 Sections where required by cutting and patching operations. - Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting. - 6. Proceed with patching after construction operations requiring cutting are complete. - C. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other Work. Patch with durable seams that are as invisible as possible. Provide materials and comply with installation requirements specified in other Sections. - 1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate integrity of installation. - 2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will eliminate evidence of patching and refinishing. - a. Clean piping, conduit, and similar features before applying paint or other finishing materials. - b. Restore damaged pipe covering to its original condition. - 3. Floors and Walls: Where walls or partitions that are removed extend one finished area into another, patch and repair floor and wall surfaces in the new space. Provide an even surface of uniform finish, color, texture, and appearance. Remove in-place floor and wall coverings and replace with new materials, if necessary, to achieve uniform color and appearance. - a. Where patching occurs in a painted surface, apply primer and intermediate paint coats over the patch and apply final paint coat over entire unbroken surface containing the patch. Provide additional coats until patch blends with adjacent surfaces. - Ceilings: Patch, repair, or rehang in-place ceilings as necessary to provide an even-plane surface of uniform appearance. - 5. Exterior Building Enclosure: Patch components in a manner that restores enclosure to a weathertight condition. - D. Cleaning: Clean areas and spaces where cutting and patching are performed. Completely remove paint, mortar, oils, putty, and similar materials. BLANK PAGE ## SECTION 017700 - CLOSEOUT PROCEDURES #### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY - A. This Section includes administrative and procedural requirements for contract closeout, including, but not limited to, the following: - 1. Inspection procedures. - 2. Warranties. - 3. Final cleaning. - B. Related Sections include the following: - 1. Division 01 Section "Payment Procedures" for requirements for Applications for Payment for Substantial and Final Completion. - 2. Division 01 Section "Execution" for progress cleaning of Project site. - 3. Division 01 Section "Project Record Documents" for submitting Record Drawings, Record Specifications, and Record Product Data. - 4. Division 01 Section "Operation and Maintenance Data" for operation and maintenance manual requirements. - 5. Division 01 Section "Demonstration and Training" for requirements for instructing Owner's personnel. - 6. Divisions 02 through 33 Sections for specific closeout and special cleaning requirements for the Work in those Sections. ### 1.3 SUBSTANTIAL COMPLETION - A. Preliminary Procedures: Before requesting inspection for determining date of Substantial Completion, complete the following. List items below that are incomplete in request. - 1. Prepare a list of items to be completed and corrected (punch list), the value of items on the list, and reasons why the Work is not complete. - 2. Advise Owner of pending insurance changeover requirements. - 3. Submit specific warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents. - 4. Obtain and submit releases permitting Owner unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases. - 5. Prepare and submit Project Record Documents, operation and maintenance manuals, Final Completion construction photographs, damage or settlement surveys, property surveys, and similar final record information. - 6. Deliver tools, spare parts, extra materials, and similar items to location designated by Owner. Label with manufacturer's name and model number where applicable. - 7. Complete startup testing of systems. - 8. Submit test/adjust/balance records. - 9. Terminate and remove temporary facilities from Project site, along with mockups, construction tools, and similar elements. - 10. Advise Owner of changeover in heat and other utilities. - 11. Submit changeover information related to Owner's occupancy, use, operation, and maintenance. - 12. Complete final cleaning requirements, including touchup painting. - 13. Touch up and otherwise repair and restore marred exposed finishes to eliminate visual defects. - B. Inspection: Submit a written request for inspection for Substantial Completion. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare the Certificate of Substantial Completion after inspection or will notify Contractor of items, either on Contractor's list or additional items identified by Architect, that must be completed or corrected before certificate will be issued. - 1. Reinspection: Request reinspection when the Work identified in previous inspections as incomplete is completed or corrected. - 2. Results of completed inspection will form the basis of requirements for Final Completion. ## 1.4 FINAL COMPLETION - A. Preliminary Procedures: Before requesting final inspection for determining date of Final Completion, complete the following: - 1. Submit a final Application for Payment according to Division 01 Section "Payment Procedures." - 2. Submit certified copy of Architect's Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by Architect. The certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance. - 3. Submit evidence of final, continuing insurance coverage complying with insurance requirements. - Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment, and systems. Submit demonstration and training videotapes. - B. Inspection: Submit a written request for final inspection for acceptance. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare a final Certificate for Payment after inspection or will notify Contractor of construction that must be completed or corrected before certificate will be issued. - 1. Reinspection: Request reinspection when the Work identified in previous inspections as incomplete is completed or corrected. ## 1.5 LIST OF INCOMPLETE ITEMS (PUNCH LIST) - A. Preparation: Submit three copies of list. Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction. - 1. Organize list of spaces in sequential order, starting with exterior areas first and proceeding from lowest floor to highest floor. - Organize items applying to each space by major element, including categories for ceiling, individual walls, floors, equipment, and building systems. - 3. Include the following information at the top of each page: - a. Project name. - b. Date. - c. Name of Architect. - d. Name of Contractor. - e. Page number. # 1.6 WARRANTIES A. Submittal Time: Submit written warranties on request of Architect for designated portions of the
Work where commencement of warranties other than date of Substantial Completion is indicated. - B. Organize warranty documents into an orderly sequence based on the table of contents of the Project Manual. - 1. Bind warranties and bonds in heavy-duty, 3-ring, vinyl-covered, loose-leaf binders, thickness as necessary to accommodate contents, and sized to receive 8-1/2-by-11-inch (215-by-280-mm) paper. - 2. Provide heavy paper dividers with plastic-covered tabs for each separate warranty. Mark tab to identify the product or installation. Provide a typed description of the product or installation, including the name of the product and the name, address, and telephone number of Installer. - 3. Identify each binder on the front and spine with the typed or printed title "WARRANTIES," Project name, and name of Contractor. - C. Provide additional copies of each warranty to include in operation and maintenance manuals. #### PART 2 - PRODUCTS ### 2.1 MATERIALS A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces. ### PART 3 - EXECUTION # 3.1 FINAL CLEANING - A. General: Provide final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations. - B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions. - 1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a portion of Project: - Clean Project site, yard, and grounds, in areas disturbed by construction activities, including landscape development areas, of rubbish, waste material, litter, and other foreign substances. - b. Sweep paved areas broom clean. Remove petrochemical spills, stains, and other foreign deposits. - c. Rake grounds that are neither planted nor paved to a smooth, even-textured surface. - d. Remove tools, construction equipment, machinery, and surplus material from Project site. - e. Remove snow and ice to provide safe access to building. - f. Clean exposed exterior and interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition. - g. Remove debris and surface dust from limited access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces. - h. Sweep concrete floors broom clean in unoccupied spaces. - Vacuum carpet and similar soft surfaces, removing debris and excess nap; shampoo if visible soil or stains remain. - Clean transparent materials, including mirrors and glass in doors and windows. Remove glazing compounds and other noticeable, vision-obscuring materials. Replace chipped or - broken glass and other damaged transparent materials. Polish mirrors and glass, taking care not to scratch surfaces. - k. Remove labels that are not permanent. - I. Touch up and otherwise repair and restore marred, exposed finishes and surfaces. Replace finishes and surfaces that cannot be satisfactorily repaired or restored or that already show evidence of repair or restoration. - Do not paint over "UL" and similar labels, including mechanical and electrical nameplates. - m. Wipe surfaces of mechanical and electrical equipment, elevator equipment, and similar equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances. - n. Replace parts subject to unusual operating conditions. - Clean plumbing fixtures to a sanitary condition, free of stains, including stains resulting from water exposure. - p. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills. - q. Clean ducts, blowers, and coils if units were operated without filters during construction. - r. Clean light fixtures, lamps, globes, and reflectors to function with full efficiency. Replace burned-out bulbs, and those noticeably dimmed by hours of use, and defective and noisy starters in fluorescent and mercury vapor fixtures to comply with requirements for new fixtures. - s. Leave Project clean and ready for occupancy. - C. Comply with safety standards for cleaning. Do not burn waste materials. Do not bury debris or excess materials on Owner's property. Do not discharge volatile, harmful, or dangerous materials into drainage systems. Remove waste materials from Project site and dispose of lawfully. ## SECTION 017823 - OPERATION AND MAINTENANCE DATA ### PART 1 - GENERAL ### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY - A. This Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following: - 1. Emergency manuals. - 2. Operation manuals for systems, subsystems, and equipment. - 3. Maintenance manuals for the care and maintenance of products, materials, and finishes, systems, and equipment. - B. Related Sections include the following: - 1. Division 01 Section "Submittal Procedures" for submitting copies of submittals for operation and maintenance manuals. - 2. Division 01 Section "Closeout Procedures" for submitting operation and maintenance manuals. - 3. Division 01 Section "Project Record Documents" for preparing Record Drawings for operation and maintenance manuals. - 4. Divisions 02 through 33 Sections for specific operation and maintenance manual requirements for the Work in those Sections. # 1.3 DEFINITIONS - A. System: An organized collection of parts, equipment, or subsystems united by regular interaction. - B. Subsystem: A portion of a system with characteristics similar to a system. ### 1.4 SUBMITTALS - A. Initial Submittal: Submit 2 draft copies of each manual at least 15 days before requesting inspection for Substantial Completion. Include a complete operation and maintenance directory. Architect will return one copy of draft and mark whether general scope and content of manual are acceptable. - B. Final Submittal: Submit 3 copies of each manual in final form at least 15 days before final inspection. Architect will return copy with comments within 15 days after final inspection. - 1. Correct or modify each manual to comply with Architect's comments. Submit 3 copies of each corrected manual within 15 days of receipt of Architect's comments. ### 1.5 COORDINATION A. Where operation and maintenance documentation includes information on installations by more than one factory-authorized service representative, assemble and coordinate information furnished by representatives and prepare manuals. ### PART 2 - PRODUCTS ### 2.1 MANUALS, GENERAL - A. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed: - 1. Title page. - 2. Table of contents. - 3. Manual contents. - B. Title Page: Enclose title page in transparent plastic sleeve. Include the following information: - 1. Subject matter included in manual. - 2. Name and address of Project. - 3. Name and address of Owner. - 4. Date of submittal. - 5. Name, address, and telephone number of Contractor. - 6. Name and address of Architect. - Cross-reference to related systems in other operation and maintenance manuals. - C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual. - If operation or maintenance documentation requires more than one volume to accommodate data, include comprehensive table of contents for all volumes in each volume of the set. - D. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder. - 1. Binders: Heavy-duty, 3-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch (215-by-280-mm) paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets. - a. If two or more binders are necessary to accommodate data of a system, organize data in each binder into groupings by subsystem and related components. Cross-reference other binders if necessary to provide essential information for proper operation or maintenance of equipment or system. - b. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents. Indicate volume number for multiple-volume sets. - Dividers: Heavy-paper dividers with plastic-covered tabs for each section. Mark each tab to indicate contents. Include typed list of products and major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual. - 3. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software diskettes for computerized electronic equipment. - 4. Supplementary Text: Prepared on 8-1/2-by-11-inch (215-by-280-mm) white bond paper. - 5. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text. - If oversize drawings are
necessary, fold drawings to same size as text pages and use as foldouts. - b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations. #### 2.2 EMERGENCY MANUALS - A. Content: Organize manual into a separate section for each of the following: - 1. Type of emergency. - 2. Emergency instructions. - 3. Emergency procedures. - B. Type of Emergency: Where applicable for each type of emergency indicated below, include instructions and procedures for each system, subsystem, piece of equipment, and component: - 1. Fire. - 2. Flood. - 3. Gas leak. - 4. Water leak. - Power failure. - 6. Water outage. - 7. System, subsystem, or equipment failure. - 8. Chemical release or spill. - C. Emergency Instructions: Describe and explain warnings, trouble indications, error messages, and similar codes and signals. Include responsibilities of Owner's operating personnel for notification of Installer, supplier, and manufacturer to maintain warranties. - D. Emergency Procedures: Include the following, as applicable: - 1. Instructions on stopping. - 2. Shutdown instructions for each type of emergency. - 3. Operating instructions for conditions outside normal operating limits. - 4. Required sequences for electric or electronic systems. - 5. Special operating instructions and procedures. ## 2.3 OPERATION MANUALS - A. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information: - 1. System, subsystem, and equipment descriptions. - 2. Performance and design criteria if Contractor is delegated design responsibility. - 3. Operating standards. - 4. Operating procedures. - Operating logs. - 6. Wiring diagrams. - 7. Control diagrams. - 8. Piped system diagrams. - Precautions against improper use. - 10. License requirements including inspection and renewal dates. - B. Descriptions: Include the following: - 1. Product name and model number. - 2. Manufacturer's name. - 3. Equipment identification with serial number of each component. - 4. Equipment function. - 5. Operating characteristics. - 6. Limiting conditions. - 7. Performance curves. - 8. Engineering data and tests. - 9. Complete nomenclature and number of replacement parts. - C. Operating Procedures: Include the following, as applicable: - 1. Startup procedures. - 2. Equipment or system break-in procedures. - 3. Routine and normal operating instructions. - 4. Regulation and control procedures. - 5. Instructions on stopping. - 6. Normal shutdown instructions. - 7. Seasonal and weekend operating instructions. - 8. Required sequences for electric or electronic systems. - 9. Special operating instructions and procedures. - D. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed. - E. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification. ### 2.4 PRODUCT MAINTENANCE MANUAL - A. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below. - B. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual. - C. Product Information: Include the following, as applicable: - 1. Product name and model number. - 2. Manufacturer's name. - 3. Color, pattern, and texture. - 4. Material and chemical composition. - 5. Reordering information for specially manufactured products. - D. Maintenance Procedures: Include manufacturer's written recommendations and the following: - 1. Inspection procedures. - 2. Types of cleaning agents to be used and methods of cleaning. - 3. List of cleaning agents and methods of cleaning detrimental to product. - 4. Schedule for routine cleaning and maintenance. - 5. Repair instructions. - E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services. - F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds. - 1. Include procedures to follow and required notifications for warranty claims. ### 2.5 SYSTEMS AND EQUIPMENT MAINTENANCE MANUAL - A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below. - B. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual. - C. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including the following information for each component part or piece of equipment: - 1. Standard printed maintenance instructions and bulletins. - 2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly. - 3. Identification and nomenclature of parts and components. - 4. List of items recommended to be stocked as spare parts. - D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures: - 1. Test and inspection instructions. - 2. Troubleshooting guide. - 3. Precautions against improper maintenance. - 4. Disassembly; component removal, repair, and replacement; and reassembly instructions. - 5. Aligning, adjusting, and checking instructions. - 6. Demonstration and training videotape, if available. - E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment. - 1. Scheduled Maintenance and Service: Tabulate actions for daily, weekly, monthly, quarterly, semiannual, and annual frequencies. - 2. Maintenance and Service Record: Include manufacturers' forms for recording maintenance. - F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services. - G. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds. - 1. Include procedures to follow and required notifications for warranty claims. ## PART 3 - EXECUTION # 3.1 MANUAL PREPARATION - A. Emergency Manual: Assemble a complete set of emergency information indicating procedures for use by emergency personnel and by Owner's operating personnel for types of emergencies indicated. - B. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work. - C. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system. - 1. Engage a factory-authorized service representative to assemble and prepare information for each system, subsystem, and piece of equipment not part of a system. - 2. Prepare a separate manual for each system and subsystem, in the form of an instructional manual for use by Owner's operating personnel. - D. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable. - 1. Prepare supplementary text if manufacturers' standard printed data are not available and where the information is necessary for proper operation and maintenance of equipment or systems. - E. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in Record Drawings to ensure correct illustration of completed installation. - 1. Do not use original Project Record Documents as part of operation and maintenance manuals. - Comply with requirements of newly prepared Record Drawings in Division 01 Section "Project Record Documents." - F. Comply with Division 01 Section "Closeout Procedures" for schedule for submitting operation and maintenance documentation. ## SECTION 017839 - PROJECT RECORD DOCUMENTS ### PART 1 - GENERAL ### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY - A. This Section includes administrative and procedural requirements for Project Record Documents, including the following: - 1. Record Drawings. - 2. Record
Specifications. - 3. Record Product Data. - B. Related Sections include the following: - 1. Division 01 Section "Closeout Procedures" for general closeout procedures. - 2. Division 01 Section "Operation and Maintenance Data" for operation and maintenance manual requirements. - 3. Divisions 02 through 33 Sections for specific requirements for Project Record Documents of the Work in those Sections. ### 1.3 SUBMITTALS - A. Record Drawings: Comply with the following: - 1. Number of Copies: Submit one set(s) of marked-up Record Prints. - 2. Number of Copies: Submit copies of Record Drawings as follows: - Final Submittal: Submit one set of marked-up Record Prints, include each Drawing, whether or not changes and additional information were recorded. - B. Record Specifications: Submit one copy of Project's Specifications, including addenda and contract modifications. - C. Record Product Data: Submit one copy of each Product Data submittal. - 1. Where Record Product Data is required as part of operation and maintenance manuals, submit marked-up Product Data as an insert in manual instead of submittal as Record Product Data. ### PART 2 - PRODUCTS #### 2.1 RECORD DRAWINGS A. Record Prints: Maintain one set of blue- or black-line white prints of the Contract Drawings and Shop Drawings. - 1. Preparation: Mark Record Prints to show the actual installation where installation varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to prepare the marked-up Record Prints. - a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later. - b. Accurately record information in an understandable drawing technique. - c. Record data as soon as possible after obtaining it. Record and check the markup before enclosing concealed installations. - 2. Content: Types of items requiring marking include, but are not limited to, the following: - a. Dimensional changes to Drawings. - b. Revisions to details shown on Drawings. - c. Depths of foundations below first floor. - d. Locations and depths of underground utilities. - e. Revisions to routing of piping and conduits. - f. Revisions to electrical circuitry. - g. Actual equipment locations. - h. Duct size and routing. - i. Locations of concealed internal utilities. - j. Changes made by Change Order or Construction Change Directive. - k. Changes made following Architect's written orders. - I. Details not on the original Contract Drawings. - m. Field records for variable and concealed conditions. - n. Record information on the Work that is shown only schematically. - 3. Mark the Contract Drawings or Shop Drawings, whichever is most capable of showing actual physical conditions, completely and accurately. If Shop Drawings are marked, show cross-reference on the Contract Drawings. - 4. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location. - Mark important additional information that was either shown schematically or omitted from original Drawings. - 6. Note Construction Change Directive numbers, alternate numbers, Change Order numbers, and similar identification, where applicable. - B. Newly Prepared Record Drawings: Prepare new Drawings instead of preparing Record Drawings where Architect determines that neither the original Contract Drawings nor Shop Drawings are suitable to show actual installation. - 1. New Drawings may be required when a Change Order is issued as a result of accepting an alternate, substitution, or other modification. - Consult Architectfor proper scale and scope of detailing and notations required to record the actual physical installation and its relation to other construction. Integrate newly prepared Record Drawings into Record Drawing sets; comply with procedures for formatting, organizing, copying, binding, and submitting. - C. Format: Identify and date each Record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location. - 1. Record Prints: Organize Record Prints and newly prepared Record Drawings into manageable sets. Bind each set with durable paper cover sheets. Include identification on cover sheets. - Record Transparencies: Organize into unbound sets matching Record Prints. Place transparencies in durable tube-type drawing containers with end caps. Mark end cap of each container with identification. If container does not include a complete set, identify Drawings included. - 3. Identification: As follows: - a. Project name. - b. Date. - c. Designation "PROJECT RECORD DRAWINGS." - d. Name of Architect. - e. Name of Contractor. ### 2.2 RECORD SPECIFICATIONS - A. Preparation: Mark Specifications to indicate the actual product installation where installation varies from that indicated in Specifications, addenda, and contract modifications. - 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later. - 2. Mark copy with the proprietary name and model number of products, materials, and equipment furnished, including substitutions and product options selected. - 3. Record the name of manufacturer, supplier, Installer, and other information necessary to provide a record of selections made. - 4. For each principal product, indicate whether Record Product Data has been submitted in operation and maintenance manuals instead of submitted as Record Product Data. - 5. Note related Change Orders, Record Product Data, and Record Drawings where applicable. ### 2.3 RECORD PRODUCT DATA - A. Preparation: Mark Product Data to indicate the actual product installation where installation varies substantially from that indicated in Product Data submittal. - 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later. - 2. Include significant changes in the product delivered to Project site and changes in manufacturer's written instructions for installation. - 3. Note related Change Orders, Record Specifications, and Record Drawings where applicable. ## 2.4 MISCELLANEOUS RECORD SUBMITTALS A. Assemble miscellaneous records required by other Specification Sections for miscellaneous record keeping and submittal in connection with actual performance of the Work. Bind or file miscellaneous records and identify each, ready for continued use and reference. ## PART 3 - EXECUTION # 3.1 RECORDING AND MAINTENANCE - A. Recording: Maintain one copy of each submittal during the construction period for Project Record Document purposes. Post changes and modifications to Project Record Documents as they occur; do not wait until the end of Project. - B. Maintenance of Record Documents and Samples: Store Record Documents and Samples in the field office apart from the Contract Documents used for construction. Do not use Project Record Documents for construction purposes. Maintain Record Documents in good order and in a clean, dry, legible condition, protected from deterioration and loss. Provide access to Project Record Documents for Architect's reference during normal working hours. END OF SECTION 017839 BLANK PAGE ## SECTION 017900 - DEMONSTRATION AND TRAINING ### PART 1 - GENERAL ### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY - A. This Section includes administrative and procedural requirements for instructing Owner's personnel, including the following: - 1. Demonstration of operation of systems, subsystems, and equipment. - 2. Training in operation and maintenance of systems, subsystems, and equipment. - B. Related Sections include the following: - 1. Divisions 02 through 33 Sections for specific requirements for demonstration and training for products in those Sections. ### 1.3 SUBMITTALS - A. Instruction Program: Submit two copies of outline of instructional program for demonstration and training, including a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module. - 1. At completion of training, submit one complete training manual(s) for Owner's use. - B. Qualification Data: For facilitator and instructor. - C. Attendance Record: For each training module, submit list of participants and length of instruction time. - D. Evaluations: For each participant and for each training module, submit results and documentation of performance-based test. ### 1.4 QUALITY ASSURANCE - A. Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance. - B. Instructor Qualifications: A factory-authorized service representative, complying with requirements in Division 01 Section "Quality Requirements," experienced in operation and maintenance procedures and training. ### 1.5 COORDINATION - A. Coordinate instruction schedule with Owner's operations. Adjust schedule as required to minimize disrupting Owner's operations. - B. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content. - C. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by Architect. ### PART 2 - PRODUCTS # 2.1 INSTRUCTION PROGRAM- - A. Program Structure: Develop an instruction program that includes individual training modules for each system and equipment not part of a
system, as required by individual Specification Sections, and as follows: - 1. Conveying systems, including elevators. - B. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participant is expected to master. For each module, include instruction for the following: - 1. Basis of System Design, Operational Requirements, and Criteria: Include the following: - a. System, subsystem, and equipment descriptions. - b. Performance and design criteria if Contractor is delegated design responsibility. - c. Operating standards. - d. Regulatory requirements. - e. Equipment function. - f. Operating characteristics. - g. Limiting conditions. - h. Performance curves. - 2. Documentation: Review the following items in detail: - a. Emergency manuals. - b. Operations manuals. - c. Maintenance manuals. - d. Project Record Documents. - e. Identification systems. - f. Warranties and bonds. - g. Maintenance service agreements and similar continuing commitments. - 3. Emergencies: Include the following, as applicable: - Instructions on meaning of warnings, trouble indications, and error messages. - b. Instructions on stopping. - c. Shutdown instructions for each type of emergency. - d. Operating instructions for conditions outside of normal operating limits. - e. Sequences for electric or electronic systems. - f. Special operating instructions and procedures. - 4. Operations: Include the following, as applicable: - a. Startup procedures. - b. Equipment or system break-in procedures. - c. Routine and normal operating instructions. - d. Regulation and control procedures. - e. Control sequences. - f. Safety procedures. - g. Instructions on stopping. - h. Normal shutdown instructions. - i. Operating procedures for emergencies. - j. Operating procedures for system, subsystem, or equipment failure. - k. Seasonal and weekend operating instructions. - I. Required sequences for electric or electronic systems. - m. Special operating instructions and procedures. - 5. Adjustments: Include the following: - a. Alignments. - b. Checking adjustments. - c. Noise and vibration adjustments. - Economy and efficiency adjustments. - 6. Troubleshooting: Include the following: - a. Diagnostic instructions. - b. Test and inspection procedures. - 7. Maintenance: Include the following: - a. Inspection procedures. - b. Types of cleaning agents to be used and methods of cleaning. - c. List of cleaning agents and methods of cleaning detrimental to product. - d. Procedures for routine cleaning - e. Procedures for preventive maintenance. - f. Procedures for routine maintenance. - g. Instruction on use of special tools. - 8. Repairs: Include the following: - a. Diagnosis instructions. - b. Repair instructions. - c. Disassembly; component removal, repair, and replacement; and reassembly instructions. - d. Instructions for identifying parts and components. - e. Review of spare parts needed for operation and maintenance. ### PART 3 - EXECUTION ## 3.1 PREPARATION - A. Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a combined training manual. - B. Set up instructional equipment at instruction location. # 3.2 INSTRUCTION - A. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Owner for number of participants, instruction times, and location. - B. Engage qualified instructors to instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system. - 1. Owner will furnish an instructor to describe Owner's operational philosophy. - 2. Owner will furnish Contractor with names and positions of participants. - C. Scheduling: Provide instruction at mutually agreed on times. For equipment that requires seasonal operation, provide similar instruction at start of each season. - 1. Schedule training with Owner with at least seven days' advance notice. - D. Evaluation: At conclusion of each training module, assess and document each participant's mastery of module by use of a demonstration performance-based test. - E. Cleanup: Collect used and leftover educational materials and give to Owner. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use. END OF SECTION 017900 ## SECTION 024119 - SELECTIVE STRUCTURE DEMOLITION ### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY - A. This Section includes the following: - 1. Demolition and removal of selected portions of building or structure. - 2. Demolition and removal of selected site elements. - 3. Salvage of existing items to be reused or recycled. - B. Related Sections include the following: - 1. Division 01 Section "Summary" for use of premises, and phasing, and Owner-occupancy requirements. - 2. Division 01 Section "Photographic Documentation" for preconstruction photographs taken before selective demolition operations. - 3. Division 01 Section "Temporary Facilities and Controls" for temporary construction and environmental-protection measures for selective demolition operations. - 4. Division 01 Section "Cutting and Patching" for cutting and patching procedures. - Division 01 Section "Construction Waste Management and Disposal" for disposal of demolished materials. - 6. Division 02 Section "Structure Demolition" for demolition of entire buildings, structures, and site improvements. - 7. Division 31 Section "Site Clearing" for site clearing and removal of above- and below-grade improvements. # 1.3 DEFINITIONS - A. Remove: Detach items from existing construction and legally dispose of them off-site, unless indicated to be removed and salvaged or removed and reinstalled. - B. Remove and Reinstall: Detach items from existing construction, prepare them for reuse, and reinstall them where indicated. - C. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled. ### 1.4 MATERIALS OWNERSHIP A. Historic items, relics, and similar objects including, but not limited to, cornerstones and their contents, commemorative plaques and tablets, antiques, and other items of interest or value to Owner that may be encountered during selective demolition remain Owner's property. Carefully remove and salvage each item or object in a manner to prevent damage and deliver promptly to Owner. ### 1.5 SUBMITTALS - A. Qualification Data: For professional engineer. - B. Schedule of Selective Demolition Activities: Indicate the following: - 1. Detailed sequence of selective demolition and removal work, with starting and ending dates for each activity. Ensure Owner's on-site operations are uninterrupted. - 2. Interruption of utility services. Indicate how long utility services will be interrupted. - 3. Coordination for shutoff, capping, and continuation of utility services. - 4. Use of elevator and stairs. - 5. Locations of proposed dust- and noise-control temporary partitions and means of egress. - Coordination of Owner's continuing occupancy of portions of existing building and of Owner's partial occupancy of completed Work. - 7. Means of protection for items to remain and items in path of waste removal from building. - C. Inventory: After selective demolition is complete, submit a list of items that have been removed and salvaged. - D. Landfill Records: Indicate receipt and acceptance of hazardous wastes by a landfill facility licensed to accept hazardous wastes. - 1. Comply with submittal requirements in Division 01 Section "Construction Waste Management and Disposal." ### 1.6 QUALITY ASSURANCE - A. Demolition Firm Qualifications: An experienced firm that has specialized in demolition work similar in material and extent to that indicated for this Project. - B. Refrigerant Recovery Technician Qualifications: Certified by an EPA-approved certification program. - C. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction. - D. Standards: Comply with ANSI A10.6 and NFPA 241. - E. Predemolition Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination." #### 1.7 PROJECT CONDITIONS - A. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner's operations will not be disrupted. - 1. Comply with requirements specified in Division 01 Section "Summary." - B. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical. - C. Notify Architect of discrepancies between existing conditions and Drawings before proceeding with selective demolition. - D. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work. - If materials suspected of containing hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Owner will remove hazardous materials under a separate contract. - E. Storage or sale of removed items or materials on-site is not permitted. - F. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations. - 1. Maintain fire-protection facilities in service during selective demolition operations. ### 1.8 WARRANTY A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during selective demolition, by methods and with materials so as not to void existing
warranties. PART 2 - PRODUCTS (Not Used) #### PART 3 - EXECUTION ## 3.1 EXAMINATION - A. Verify that utilities have been disconnected and capped. - B. Survey existing conditions and correlate with requirements indicated to determine extent of selective demolition required. - Inventory and record the condition of items to be removed and reinstalled and items to be removed and salvaged. - D. When unanticipated mechanical, electrical, or structural elements that conflict with intended function or design are encountered, investigate and measure the nature and extent of conflict. Promptly submit a written report to Architect. - E. Engage a professional engineer to survey condition of building to determine whether removing any element might result in structural deficiency or unplanned collapse of any portion of structure or adjacent structures during selective demolition operations. - F. Survey of Existing Conditions: Record existing conditions by use of measured drawings. - 1. Comply with requirements specified in Division 01 Section "Photographic Documentation." - 2. Before selective demolition or removal of existing building elements that will be reproduced or duplicated in final Work, make permanent record of measurements, materials, and construction details required to make exact reproduction. - G. Perform surveys as the Work progresses to detect hazards resulting from selective demolition activities. # 3.2 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS - A. Existing Services/Systems: Maintain services/systems indicated to remain and protect them against damage during selective demolition operations. - Comply with requirements for existing services/systems interruptions specified in Division 01 Section "Summary." - B. Service/System Requirements: Locate, identify, disconnect, and seal or cap off indicated utility services and mechanical/electrical systems serving areas to be selectively demolished. - 1. Owner will arrange to shut off indicated services/systems when requested by Contractor. - 2. Arrange to shut off indicated utilities with utility companies. - 3. If services/systems are required to be removed, relocated, or abandoned, before proceeding with selective demolition provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to other parts of building. - 4. Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit after bypassing. - Where entire wall is to be removed, existing services/systems may be removed with removal of the wall. #### 3.3 PREPARATION - A. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities. - Comply with requirements for access and protection specified in Division 01 Section "Temporary Facilities and Controls." - B. Temporary Facilities: Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain. - 1. Provide protection to ensure safe passage of people around selective demolition area and to and from occupied portions of building. - Provide temporary weather protection, during interval between selective demolition of existing construction on exterior surfaces and new construction, to prevent water leakage and damage to structure and interior areas. - 3. Protect walls, ceilings, floors, and other existing finish work that are to remain or that are exposed during selective demolition operations. - Comply with requirements for temporary enclosures, dust control, heating, and cooling specified in Division 01 Section "Temporary Facilities and Controls." - C. Temporary Shoring: Provide and maintain shoring, bracing, and structural supports as required to preserve stability and prevent movement, settlement, or collapse of construction and finishes to remain, and to prevent unexpected or uncontrolled movement or collapse of construction being demolished. - 1. Strengthen or add new supports when required during progress of selective demolition. # 3.4 SELECTIVE DEMOLITION, GENERAL - A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows: - Proceed with selective demolition systematically, from higher to lower level. Complete selective demolition operations above each floor or tier before disturbing supporting members on the next lower level. - 2. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping, to minimize disturbance of adjacent surfaces. Temporarily cover openings to remain. - Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces. - 4. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of hidden space before starting flame-cutting operations. Maintain fire watch and portable fire-suppression devices during flame-cutting operations. - 5. Maintain adequate ventilation when using cutting torches. - Remove decayed, vermin-infested, or otherwise dangerous or unsuitable materials and promptly dispose of off-site. - 7. Remove structural framing members and lower to ground by method suitable to avoid free fall and to prevent ground impact or dust generation. - 8. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing. - Dispose of demolished items and materials promptly. Comply with requirements in Division 01 Section "Construction Waste Management and Disposal." ## 3.5 SELECTIVE DEMOLITION PROCEDURES FOR SPECIFIC MATERIALS - A. Concrete: Demolish in sections. Cut concrete full depth at junctures with construction to remain and at regular intervals, using power-driven saw, then remove concrete between saw cuts. - B. Concrete Slabs-on-Grade: Saw-cut perimeter of area to be demolished, then break up and remove. # 3.6 DISPOSAL OF DEMOLISHED MATERIALS - A. General: Except for items or materials indicated to be recycled, reused, salvaged, reinstalled, or otherwise indicated to remain Owner's property, remove demolished materials from Project site and legally dispose of them in an EPA-approved landfill. - 1. Do not allow demolished materials to accumulate on-site. - 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas. - 3. Remove debris from elevated portions of building by chute, hoist, or other device that will convey debris to grade level in a controlled descent. - 4. Comply with requirements specified in Division 01 Section "Construction Waste Management and Disposal." - B. Burning: Do not burn demolished materials. - C. Disposal: Transport demolished materials off Owner's property and legally dispose of them. ## 3.7 CLEANING A. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began. END OF SECTION 024119 BLANK PAGE ## SECTION 033000 - CAST-IN-PLACE CONCRETE #### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY - A. This Section specifies cast-in place concrete, including formwork, reinforcement, concrete materials, mixture design, placement procedures, and finishes, for the following: - 1. Footings. - 2. Foundation walls. - 3. Slabs-on-grade. - B. Related Sections include the following: - 1. Division 31 Section "Earth Moving" for drainage fill under slabs-on-grade. - 2. Division 32 Section "Concrete Paving" for concrete pavement and walks. ### 1.3 DEFINITIONS A. Cementitious Materials: Portland cement alone or in combination with one or more of the following: blended hydraulic cement, fly ash and other pozzolans, ground granulated blast-furnace slag, and silica fume; subject to compliance with requirements. ## 1.4 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Design Mixtures: For each concrete mixture. Submit alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments. - 1. Indicate amounts of mixing water to be withheld for later addition at Project site. - C. Steel Reinforcement Shop Drawings: Placing drawings that detail fabrication, bending, and placement. Include bar sizes, lengths, material, grade, bar schedules, stirrup spacing, bent bar diagrams, bar arrangement, splices and laps, mechanical connections, tie spacing, hoop spacing, and supports for concrete reinforcement. - D. Qualification Data: For Installer, manufacturer, and testing agency. - E. Material Test Reports: For the following, from a qualified testing agency, indicating compliance with requirements: - Aggregates. Include service record data indicating absence of deleterious expansion of concrete due to alkali aggregate reactivity. - F. Material Certificates: For each of the following, signed by manufacturers: - 1. Cementitious materials. - Admixtures. - 3. Form materials and form-release agents. - 4. Steel reinforcement and accessories. - Curing compounds. - 6. Floor and slab treatments. - 7. Bonding agents. - 8. Adhesives. - 9. Vapor retarders. - 10. Semirigid joint filler. - 11. Joint-filler strips. - 12. Repair materials. - G. Floor
surface flatness and levelness measurements to determine compliance with specified tolerances. - H. Field quality-control test and inspection reports. - Minutes of preinstallation conference. ## 1.5 QUALITY ASSURANCE - A. Installer Qualifications: A qualified installer who employs on Project personnel qualified as ACI-certified Flatwork Technician and Finisher and a supervisor who is an ACI-certified Concrete Flatwork Technician. - B. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment. - Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities." - C. Testing Agency Qualifications: An independent agency, acceptable to authorities having jurisdiction, qualified according to ASTM C 1077 and ASTM E 329 for testing indicated, as documented according to ASTM E 548. - 1. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-01 or an equivalent certification program. - 2. Personnel performing laboratory tests shall be ACI-certified Concrete Strength Testing Technician and Concrete Laboratory Testing Technician Grade I. Testing Agency laboratory supervisor shall be an ACI-certified Concrete Laboratory Testing Technician Grade II. - D. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, obtain aggregate from one source, and obtain admixtures through one source from a single manufacturer. - E. Welding: Qualify procedures and personnel according to AWS D1.4, "Structural Welding Code-Reinforcing Steel." - F. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents: - 1. ACI 301, "Specification for Structural Concrete," Sections 1 through 5. - 2. ACI 117, "Specifications for Tolerances for Concrete Construction and Materials." - G. Concrete Testing Service: Engage a qualified independent testing agency to perform material evaluation tests and to design concrete mixtures. - H. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination." - 1. Before submitting design mixtures, review concrete design mixture and examine procedures for ensuring quality of concrete materials. Require representatives of each entity directly concerned with cast-in-place concrete to attend, including the following: - a. Contractor's superintendent. - b. Independent testing agency responsible for concrete design mixtures. - c. Ready-mix concrete manufacturer. - d. Concrete subcontractor. - 2. Review special inspection and testing and inspecting agency procedures for field quality control, concrete finishes and finishing, cold- and hot-weather concreting procedures, curing procedures, construction contraction and isolation joints, and joint-filler strips, semirigid joint fillers, forms and form removal limitations, vapor-retarder installation, anchor rod and anchorage device installation tolerances, steel reinforcement installation, floor and slab flatness and levelness measurement, concrete repair procedures, and concrete protection. ## 1.6 DELIVERY, STORAGE, AND HANDLING - A. Steel Reinforcement: Deliver, store, and handle steel reinforcement to prevent bending and damage. - B. Waterstops: Store waterstops under cover to protect from moisture, sunlight, dirt, oil, and other contaminants. #### PART 2 - PRODUCTS #### 2.1 MANUFACTURERS - A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection: - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, products specified. - 2. Products: Subject to compliance with requirements, provide one of the products specified. - Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified. - 4. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified. ## 2.2 FORM-FACING MATERIALS - A. Smooth-Formed Finished Concrete: Form-facing panels that will provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints. - 1. Plywood, metal, or other approved panel materials. - Exterior-grade plywood panels, suitable for concrete forms, complying with DOC PS 1, and as follows: - a. High-density overlay, Class 1 or better. - b. Medium-density overlay, Class 1 or better; mill-release agent treated and edge sealed. - c. Structural 1, B-B or better; mill oiled and edge sealed. - d. B-B (Concrete Form), Class 1 or better; mill oiled and edge sealed. - B. Rough-Formed Finished Concrete: Plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit. - C. Forms for Cylindrical Columns, Pedestals, and Supports: Metal, glass-fiber-reinforced plastic, paper, or fiber tubes that will produce surfaces with gradual or abrupt irregularities not exceeding specified formwork surface class. Provide units with sufficient wall thickness to resist plastic concrete loads without detrimental deformation. - D. Chamfer Strips: Wood, metal, PVC, or rubber strips, 3/4 by 3/4 inch (19 by 19 mm), minimum. - E. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces. - 1. Formulate form-release agent with rust inhibitor for steel form-facing materials. - F. Form Ties: Factory-fabricated, removable or snap-off metal or glass-fiber-reinforced plastic form ties designed to resist lateral pressure of fresh concrete on forms and to prevent spalling of concrete on removal. - Furnish units that will leave no corrodible metal closer than 1 inch (25 mm) to the plane of exposed concrete surface. - 2. Furnish ties that, when removed, will leave holes no larger than 1 inch (25 mm) in diameter in concrete surface. - 3. Furnish ties with integral water-barrier plates to walls indicated to receive dampproofing or waterproofing. ### 2.3 STEEL REINFORCEMENT A. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), deformed. #### 2.4 REINFORCEMENT ACCESSORIES - A. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place. Manufacture bar supports from steel wire, plastic, or precast concrete according to CRSI's "Manual of Standard Practice," of greater compressive strength than concrete and as follows: - 1. For concrete surfaces exposed to view where legs of wire bar supports contact forms, use CRSI Class 1 plastic-protected steel wire or CRSI Class 2 stainless-steel bar supports. #### 2.5 CONCRETE MATERIALS - A. Cementitious Material: Use the following cementitious materials, of the same type, brand, and source, throughout Project: - 1. Portland Cement: ASTM C 150, Type I/II, gray Supplement with the following, as desired: - a. Fly Ash: ASTM C 618, Class F. - B. Normal-Weight Aggregates: ASTM C 33, Class 3S coarse aggregate or better, graded. Provide aggregates from a single source. - C. Select coarse-aggregate size from three options in subparagraph below; add gradation requirements if preferred. Aggregate size limits relate to spacing of steel reinforcement, depth of slab, or thickness of concrete member. - 1. Maximum Coarse-Aggregate Size: 3/4 inch (19 mm) nominal. - 2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement. D. Water: ASTM C 94/C 94M and potable. ### 2.6 ADMIXTURES - A. Air-Entraining Admixture: ASTM C 260. - B. Chemical Admixtures: Provide admixtures certified by manufacturer to be compatible with other admixtures and that will not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride. - 1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A. - 2. Retarding Admixture: ASTM C 494/C 494M, Type B. - 3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D. - 4. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F. - 5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G. - Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II. - C. Set-Accelerating Corrosion-Inhibiting Admixture: Commercially formulated, anodic inhibitor or mixed cathodic and anodic inhibitor; capable of forming a protective barrier and minimizing chloride reactions with steel reinforcement in concrete and complying with ASTM C 494/C 494M, Type C. - 1. Available Products: - a. Boral Material Technologies, Inc.; Boral BCN. - b. Euclid Chemical Company (The); Eucon CIA. - c. Grace Construction Products, W. R. Grace & Co.; DCI. - d. Master Builders, Inc.; Rheocrete CNI. - e. Sika Corporation; Sika CNI. - D. Non-Set-Accelerating Corrosion-Inhibiting Admixture: Commercially formulated, non-set-accelerating, anodic inhibitor or mixed cathodic and anodic inhibitor; capable of forming a protective barrier and minimizing chloride reactions with steel reinforcement in concrete. - 1. Available Products: - a. Axim Concrete Technologies; Catexol 1000CI. - b. Boral Material Technologies, Inc.; Boral BCN2. - c. Cortec Corporation; MCI 2000. - d. Grace Construction Products, W. R. Grace & Co.; DCI-S. - e. Master Builders, Inc.; Rheocrete 222+. - f. Sika Corporation; FerroGard-901. ### 2.7 FIBER REINFORCEMENT - A. Synthetic Fiber: Fibrillated polypropylene fibers engineered and designed for use in concrete pavement, complying with ASTM C 1116, Type III, [1/2 to 1-1/2 inches
(13 to 38 mm) long. - 1. Available Products: - a. Fibrillated Fibers: - 1) Axim Concrete Technologies; Fibrasol F. - 2) Euclid Chemical Company (The); Fiberstrand F. - 3) FORTA Corporation; Forta. - 4) Grace Construction Products, W. R. Grace & Co.; Grace Fibers. - 5) SI Concrete Systems; Fibermesh. ### 2.8 VAPOR RETARDERS - A. Plastic Vapor Retarder: ASTM E 1745, Class A. Include manufacturer's recommended adhesive or pressure-sensitive tape. - 1. Available Products: - a. Fortifiber Corporation; Moistop Ultra A. - b. Raven Industries Inc.; Vapor Block 15. - c. Reef Industries, Inc.; Griffolyn Type-65G. - B. Granular Fill: Clean mixture of crushed stone or crushed or uncrushed gravel; ASTM D 448, Size 57, with 100 percent passing a 1-1/2-inch (37.5-mm) sieve and 0 to 5 percent passing a No. 8 (2.36-mm) sieve. - C. Fine-Graded Granular Material: Clean mixture of crushed stone, crushed gravel, and manufactured or natural sand; ASTM D 448, Size 10, with 100 percent passing a 3/8-inch (9.5-mm) sieve, 10 to 30 percent passing a No. 100 (0.15-mm) sieve, and at least 5 percent passing No. 200 (0.075-mm) sieve; complying with deleterious substance limits of ASTM C 33 for fine aggregates. ### 2.9 FLOOR AND SLAB TREATMENTS - A. Penetrating Liquid Floor Treatment: Clear, chemically reactive, waterborne solution of inorganic silicate or siliconate materials and proprietary components; odorless; colorless; that penetrates, hardens, and densifies concrete surfaces. - 1. Available Products: - a. Burke by Edoco; Titan Hard. - b. ChemMasters: Chemisil Plus. - c. ChemTec International: ChemTec One. - d. Conspec Marketing & Manufacturing Co., Inc., a Dayton Superior Company; Intraseal. - e. Curecrete Distribution Inc.; Ashford Formula. - f. Dayton Superior Corporation; Day-Chem Sure Hard. - g. Euclid Chemical Company (The); Euco Diamond Hard. - h. Kaufman Products, Inc.; SureHard. - i. L&M Construction Chemicals, Inc.; Seal Hard. - j. Meadows, W. R., Inc.; Liqui-Hard. - k. Metalcrete Industries; Floorsaver. - I. Nox-Crete Products Group, Kinsman Corporation; Duranox. - m. Symons Corporation, a Dayton Superior Company; Buff Hard. - n. US Mix Products Company; US Spec Industraseal. - o. Vexcon Chemicals, Inc.; Vexcon StarSeal PS. # 2.10 CURING MATERIALS - A. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete. - 1. Available Products: - a. Axim Concrete Technologies; Cimfilm. - b. Burke by Edoco; BurkeFilm. - c. ChemMasters; Spray-Film. - d. Conspec Marketing & Manufacturing Co., Inc., a Dayton Superior Company; Aquafilm. - e. Davton Superior Corporation: Sure Film. - f. Euclid Chemical Company (The); Eucobar. - g. Kaufman Products, Inc.; Vapor Aid. - h. Lambert Corporation; Lambco Skin. - i. L&M Construction Chemicals, Inc.; E-Con. - j. MBT Protection and Repair, Div. of ChemRex; Confilm. - k. Meadows, W. R., Inc.; Sealtight Evapre. - I. Metalcrete Industries; Waterhold. - m. Nox-Crete Products Group, Kinsman Corporation; Monofilm. - n. Sika Corporation, Inc.; SikaFilm. - o. Symons Corporation, a Dayton Superior Company; Finishing Aid. - p. Unitex; Pro-Film. - q. US Mix Products Company; US Spec Monofilm ER. - r. Vexcon Chemicals, Inc.; Certi-Vex EnvioAssist. - B. Water: Potable. - C. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, dissipating. - 1. Available Products: - a. Anti-Hydro International, Inc.; AH Curing Compound #2 DR WB. - b. Burke by Edoco; Aqua Resin Cure. - c. ChemMasters; Safe-Cure Clear. - d. Conspec Marketing & Manufacturing Co., Inc., a Dayton Superior Company; W.B. Resin Cure. - e. Dayton Superior Corporation; Day Chem Rez Cure (J-11-W). - f. Euclid Chemical Company (The); Kurez DR VOX. - g. Kaufman Products, Inc.; Thinfilm 420. - h. Lambert Corporation; Aqua Kure-Clear. - i. L&M Construction Chemicals, Inc.; L&M Cure R. - . Meadows, W. R., Inc.; 1100 Clear. - k. Nox-Crete Products Group, Kinsman Corporation; Resin Cure E. - I. Symons Corporation, a Dayton Superior Company; Resi-Chem Clear Cure. - m. Tamms Industries, Inc.; Horncure WB 30. - n. Unitex; Hydro Cure 309. - o. US Mix Products Company; US Spec Maxcure Resin Clear. - p. Vexcon Chemicals, Inc.; Certi-Vex Enviocure 100. ### 2.11 RELATED MATERIALS - A. Expansion- and Isolation-Joint-Filler Strips: ASTM D 1751, asphalt-saturated cellulosic fiber or ASTM D 1752, cork or self-expanding cork. - B. Semirigid Joint Filler: Two-component, semirigid, 100 percent solids, epoxy resin with a Type A shore durometer hardness of 80 aromatic polyurea with a Type A shore durometer hardness range of 90 to 95 per ASTM D 2240. ### 2.12 REPAIR MATERIALS - A. Repair Underlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/8 inch (3.2 mm) and that can be feathered at edges to match adjacent floor elevations. - Cement Binder: ASTM C 150, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219. - 2. Primer: Product of underlayment manufacturer recommended for substrate, conditions, and application. - 3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch (3.2 to 6 mm) or coarse sand as recommended by underlayment manufacturer. - Compressive Strength: Not less than 4000 psi (29 MPa) at 28 days when tested according to ASTM C 109/C 109M. - B. Repair Overlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/8 inch (3.2 mm) and that can be feathered at edges to match adjacent floor elevations. - Cement Binder: ASTM C 150, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219. - 2. Primer: Product of topping manufacturer recommended for substrate, conditions, and application. - 3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch (3.2 to 6 mm) or coarse sand as recommended by topping manufacturer. - Compressive Strength: Not less than 5000 psi (34.5 MPa) at 28 days when tested according to ASTM C 109/C 109M. ### 2.13 CONCRETE MIXTURES, GENERAL - A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301. - 1. Use a qualified independent testing agency for preparing and reporting proposed mixture designs based on laboratory trial mixtures. - B. Cementitious Materials: Use fly ash, as desired to reduce the total amount of portland cement, which would otherwise be used, by not less than 20 percent. Limit percentage, by weight, of cementitious materials other than portland cement in concrete as follows: - 1. Fly Ash: 20 percent. - C. Limit water-soluble, chloride-ion content in hardened concrete to 0.06 percent by weight of cement. - D. Admixtures: Use admixtures according to manufacturer's written instructions. - 1. Use water-reducing high-range or mid range water-reducing or plasticizing admixture in concrete, as required, for placement and workability. - 2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions. - 3. Use water-reducing admixture in pumped concrete, concrete for heavy-use industrial slabs and parking structure slabs, concrete required to be watertight, and concrete with a water-cementitious materials ratio below 0.50. - 4. Use corrosion-inhibiting admixture in concrete mixtures where indicated. ## 2.14 CONCRETE MIXTURES FOR BUILDING ELEMENTS - A. Footings: Proportion normal-weight concrete mixture as follows: - 1. Minimum Compressive Strength: As indicated on Drawings. If not indicated, then not less than 3000 psi (20.7 MPa) at 28 days. - 2. Maximum Water-Cementitious Materials Ratio: 0.50 - 3. Slump Limit: 5 inches (125 mm)] - 4. Air Content: 5-1/2 percent, plus or minus 1.5 percent at point of delivery for 1-1/2-inch (38-mm) nominal maximum aggregate size. - B. Foundation Walls: Proportion normal-weight concrete mixture as follows: - 1. Minimum Compressive Strength: As indicated on Drawings. If not indicated, then not less than 4000 psi (27.6 MPa)] at 28 days. - 2. Maximum Water-Cementitious Materials Ratio: 0.50. - 3. Slump Limit: 4 inches (100 mm) - 4. Air Content: 5-1/2 percent, plus or minus 1.5 percent at point of delivery for 1-1/2-inch (38-mm) nominal maximum aggregate size. - C. Interior Slabs-on-Grade: Proportion normal-weight concrete mixture as follows: - 1. Minimum Compressive Strength: As indicated on Drawings. If not indicated, then not less than 4000 psi (27.6 MPa) at 28 days. - 2. Slump Limit: 4 inches (100 mm plus or minus 1 inch (25 mm). ## 2.15 FABRICATING REINFORCEMENT A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice." #### 2.16 CONCRETE MIXING - A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94/C 94M and ASTM C 1116, and furnish batch ticket information. - When air temperature is between 85 and 90 deg F (30 and 32 deg C), reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F (32 deg C), reduce mixing and delivery time to 60 minutes. - B. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M. Mix concrete materials in appropriate drum-type batch machine mixer. - 1. For mixer capacity of 1 cu. yd. (0.76 cu. m) or smaller, continue mixing at least 1-1/2 minutes, but not more than 5 minutes after ingredients are in mixer, before any part of batch is released. - 2. For mixer capacity larger than 1 cu. yd. (0.76 cu. m), increase mixing time by 15 seconds for each additional 1 cu. yd. (0.76 cu. m). - 3. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mixture type, mixture time, quantity, and amount of water added. Record approximate location of final deposit in structure. # PART 3 - EXECUTION # 3.1 FORMWORK - A. Design, erect, shore, brace, and maintain formwork,
according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads. - B. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117. - C. Limit concrete surface irregularities, designated by ACI 347R as abrupt or gradual, as follows: - 1. Class A, 1/8 inch (3.2 mm for smooth-formed finished surfaces. - 2. Class B, 1/4 inch (6 mm) Class C, 1/2 inch (13 mm) for rough-formed finished surfaces. - D. Construct forms tight enough to prevent loss of concrete mortar. - E. Fabricate forms for easy removal without hammering or prying against concrete surfaces. Provide crush or wrecking plates where stripping may damage cast concrete surfaces. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical. - 1. Install keyways, reglets, recesses, and the like, for easy removal. - 2. Do not use rust-stained steel form-facing material. - F. Set edge forms, bulkheads, and intermediate screed strips for slabs to achieve required elevations and slopes in finished concrete surfaces. Provide and secure units to support screed strips; use strike-off templates or compacting-type screeds. - G. Provide temporary openings for cleanouts and inspection ports where interior area of formwork is inaccessible. Close openings with panels tightly fitted to forms and securely braced to prevent loss of concrete mortar. Locate temporary openings in forms at inconspicuous locations. - H. Chamfer exterior corners and edges of permanently exposed concrete. - I. Form openings, chases, offsets, sinkages, keyways, reglets, blocking, screeds, and bulkheads required in the Work. Determine sizes and locations from trades providing such items. - J. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete. - K. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment. - L. Coat contact surfaces of forms with form-release agent, according to manufacturer's written instructions, before placing reinforcement. #### 3.2 EMBEDDED ITEMS - A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded. - 1. Install anchor rods, accurately located, to elevations required and complying with tolerances in Section 7.5 of AISC's "Code of Standard Practice for Steel Buildings and Bridges." - 2. Install reglets to receive waterproofing and to receive through-wall flashings in outer face of concrete frame at exterior walls, where flashing is shown at lintels, shelf angles, and other conditions. - 3. Install dovetail anchor slots in concrete structures as indicated. ## 3.3 REMOVING AND REUSING FORMS - A. General: Formwork for sides of beams, walls, columns, and similar parts of the Work that does not support weight of concrete may be removed after cumulatively curing at not less than 50 deg F (10 deg C) for 24 hours after placing concrete, if concrete is hard enough to not be damaged by form-removal operations and curing and protection operations are maintained. - B. Clean and repair surfaces of forms to be reused in the Work. Split, frayed, delaminated, or otherwise damaged form-facing material will not be acceptable for exposed surfaces. Apply new form-release agent. - C. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints. Align and secure joints to avoid offsets. Do not use patched forms for exposed concrete surfaces unless approved by Architect. # 3.4 VAPOR RETARDERS - A. Plastic Vapor Retarders: Place, protect, and repair vapor retarders according to ASTM E 1643 and manufacturer's written instructions. - 1. Lap joints 6 inches (150 mm) and seal with manufacturer's recommended tape. - B. Granular Course: Cover vapor retarder with granular fill fine-graded granular material, moisten, and compact with mechanical equipment to elevation tolerances of plus 0 inch (0 mm) or minus 3/4 inch (19 mm). - Place and compact a 1/2-inch- (13-mm-) thick layer of fine-graded granular material over granular fill. ### 3.5 STEEL REINFORCEMENT - A. General: Comply with CRSI's "Manual of Standard Practice" for placing reinforcement. - Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete. - B. Clean reinforcement of loose rust and mill scale, earth, ice, and other foreign materials that would reduce bond to concrete. - C. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcement with bar supports to maintain minimum concrete cover. Do not tack weld crossing reinforcing bars. - 1. Weld reinforcing bars according to AWS D1.4, where indicated. - D. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces. - E. Install welded wire reinforcement in longest practicable lengths on bar supports spaced to minimize sagging. Lap edges and ends of adjoining sheets at least one mesh spacing. Offset laps of adjoining sheet widths to prevent continuous laps in either direction. Lace overlaps with wire. - F. Epoxy-Coated Reinforcement: Repair cut and damaged epoxy coatings with epoxy repair coating according to ASTM D 3963/D 3963M. Use epoxy-coated steel wire ties to fasten epoxy-coated steel reinforcement. - G. Zinc-Coated Reinforcement: Repair cut and damaged zinc coatings with zinc repair material according to ASTM A 780. Use galvanized steel wire ties to fasten zinc-coated steel reinforcement. ### 3.6 JOINTS - A. General: Construct joints true to line with faces perpendicular to surface plane of concrete. - B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect. - Place joints perpendicular to main reinforcement. Continue reinforcement across construction joints, unless otherwise indicated. Do not continue reinforcement through sides of strip placements of floors and slabs. - 2. Form keyed joints as indicated. Embed keys at least 1-1/2 inches (38 mm) into concrete. - 3. Locate joints for beams, slabs, joists, and girders in the middle third of spans. Offset joints in girders a minimum distance of twice the beam width from a beam-girder intersection. - Locate horizontal joints in walls and columns at underside of floors, slabs, beams, and girders and at the top of footings or floor slabs. - 5. Space vertical joints in walls: Locate joints beside piers integral with walls, near corners, and in concealed locations where possible. - 6. Use a bonding agent at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces. - 7. Use epoxy-bonding adhesive at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces. - C. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of concrete thickness as follows: - 1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint to a radius of 1/8 inch (3.2 mm). Repeat grooving of contraction joints after applying surface finishes. Eliminate groover tool marks on concrete surfaces. - Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch- (3.2-mm-) wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before concrete develops random contraction cracks. ## 3.7 CONCRETE PLACEMENT - A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections have been performed. - B. Do not add water to concrete during delivery, at Project site, or during placement unless approved by Architect. - Before test sampling and placing concrete, water may be added at Project site, subject to limitations of ACI 301. - 1. Do not add water to concrete after adding high-range water-reducing admixtures to mixture. - D. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete will be placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as indicated. Deposit concrete to avoid segregation. - Deposit concrete in horizontal layers of depth to not exceed formwork design pressures and in a manner to avoid inclined construction joints. - 2. Consolidate placed concrete with mechanical vibrating equipment according to ACI 301. - 3. Do not use vibrators to transport concrete inside forms. Insert and withdraw vibrators vertically at uniformly spaced locations to rapidly penetrate placed layer and at least 6 inches (150 mm) into preceding layer. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing mixture constituents to segregate. - E. Deposit and consolidate concrete for floors and slabs in a continuous operation, within limits of construction joints, until placement of a panel or section is complete. - 1. Consolidate concrete during placement operations so concrete is thoroughly worked around reinforcement and other embedded items and into corners. - 2. Maintain reinforcement in position on chairs during concrete placement. - 3. Screed slab surfaces with a straightedge and strike off to correct elevations. -
4. Slope surfaces uniformly to drains where required. - 5. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane, before excess bleedwater appears on the surface. Do not further disturb slab surfaces before starting finishing operations. - F. Cold-Weather Placement: Comply with ACI 306.1 and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures. - 1. When average high and low temperature is expected to fall below 40 deg F (4.4 deg C) for three successive days, maintain delivered concrete mixture temperature within the temperature range required by ACI 301. - 2. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials. - 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mixture designs. - G. Hot-Weather Placement: Comply with ACI 301 and as follows: - 1. Maintain concrete temperature below 90 deg F (32 deg C) at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option. - 2. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade uniformly moist without standing water, soft spots, or dry areas. ### 3.8 FINISHING FORMED SURFACES - A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defects repaired and patched. Remove fins and other projections that exceed specified limits on formedsurface irregularities. - 1. Apply to concrete surfaces not exposed to public view. - B. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and defects. Remove fins and other projections that exceed specified limits on formed-surface irregularities. - 1. Apply to concrete surfaces exposed to public view. - C. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces, unless otherwise indicated. ## 3.9 FINISHING FLOORS AND SLABS - A. General: Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces. - B. Scratch Finish: While still plastic, texture concrete surface that has been screeded and bull-floated or darbied. Use stiff brushes, brooms, or rakes to produce a profile amplitude of 1/4 inch (6 mm) in 1 direction. - 1. Apply scratch finish to surfaces indicated to receive concrete floor toppings. - C. Float Finish: Consolidate surface with power-driven floats or by hand floating if area is small or inaccessible to power driven floats. Restraighten, cut down high spots, and fill low spots. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture. - 1. Apply float finish to surfaces indicated - D. Trowel Finish: After applying float finish, apply first troweling and consolidate concrete by hand or power-driven trowel. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings. - 1. Apply a trowel finish to surfaces indicated. - Finish surfaces to the following tolerances, according to ASTM E 1155 (ASTM E 1155M), for a randomly trafficked floor surface: - a. Specified overall values of flatness, F(F) 45; and of levelness, F(L) 35; with minimum local values of flatness, F(F) 30; and of levelness, F(L) 24. - 3. Finish and measure surface so gap at any point between concrete surface and an unleveled, freestanding, 10-foot- (3.05-m-) long straightedge resting on 2 high spots and placed anywhere on the surface does not exceed 1/4 inch (6 mm). - E. Trowel and Fine-Broom Finish: Apply a first trowel finish to surfaces indicated while concrete is still plastic, slightly scarify surface with a fine broom. - 1. Comply with flatness and levelness tolerances for trowel finished floor surfaces. - F. Broom Finish: Apply a broom finish to exterior concrete platforms, aprons, steps, and ramps, and elsewhere as indicated. - 1. Immediately after float finishing, slightly roughen trafficked surface by brooming with fiber-bristle broom perpendicular to main traffic route. Coordinate required final finish with Architect before application. #### 3.10 MISCELLANEOUS CONCRETE ITEMS - A. Filling In: Fill in holes and openings left in concrete structures, unless otherwise indicated, after work of other trades is in place. Mix, place, and cure concrete, as specified, to blend with in-place construction. Provide other miscellaneous concrete filling indicated or required to complete the Work. - B. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded. - C. Equipment Bases and Foundations: Provide machine and equipment bases and foundations as shown on Drawings. Set anchor bolts for machines and equipment at correct elevations, complying with diagrams or templates from manufacturer furnishing machines and equipment. - D. Steel Pan Stairs: Provide concrete fill for steel pan stair treads, landings, and associated items. Cast-in inserts and accessories as shown on Drawings. Screed, tamp, and trowel-finish concrete surfaces. ## 3.11 CONCRETE PROTECTING AND CURING - A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and ACI 301 for hot-weather protection during curing. - B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h (1 kg/sq. m x h) before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing. - C. Formed Surfaces: Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces. If forms remain during curing period, moist cure after loosening forms. If removing forms before end of curing period, continue curing for the remainder of the curing period. - D. Unformed Surfaces: Begin curing immediately after finishing concrete. Cure unformed surfaces, including floors and slabs, concrete floor toppings, and other surfaces. - E. Cure concrete according to ACI 308.1, by one or a combination of the following methods: - Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials: - a. Water. - b. Continuous water-fog spray. - c. Absorptive cover, water saturated, and kept continuously wet. Cover concrete surfaces and edges with 12-inch (300-mm) lap over adjacent absorptive covers. - Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches (300 mm), and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period using cover material and waterproof tape. - Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive floor coverings. - b. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive penetrating liquid floor treatments. - c. Cure concrete surfaces to receive floor coverings with either a moisture-retaining cover or a curing compound that the manufacturer certifies will not interfere with bonding of floor covering used on Project.. - Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period. - a. After curing period has elapsed, remove curing compound without damaging concrete surfaces by method recommended by curing compound manufacturer. - 4. Curing and Sealing Compound: Apply uniformly to floors and slabs indicated in a continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later and apply a second coat. Maintain continuity of coating and repair damage during curing period. # 3.12 LIQUID FLOOR TREATMENTS - A. Penetrating Liquid Floor Treatment: Prepare, apply, and finish penetrating liquid floor treatment according to manufacturer's written instructions. - 1. Remove curing compounds, sealers, oil, dirt, laitance, and other contaminants and complete surface repairs. - 2. Do not apply to concrete that is less than 28 days' old. - 3. Apply liquid until surface is saturated, scrubbing into surface until a gel forms; rewet; and repeat brooming or scrubbing. Rinse with water; remove excess material until surface is dry. Apply a second coat in a similar manner if surface is rough or porous. - B. Sealing Coat: Uniformly apply a continuous sealing coat of curing and sealing compound to hardened concrete by power spray or roller according to manufacturer's written instructions. ### 3.13 JOINT FILLING - A. Prepare,
clean, and install joint filler according to manufacturer's written instructions. - Defer joint filling until concrete has aged at least six months. Do not fill joints until construction traffic has permanently ceased. - B. Remove dirt, debris, saw cuttings, curing compounds, and sealers from joints; leave contact faces of joint clean and dry. C. Install semirigid joint filler full depth in saw-cut joints and at least 2 inches (50 mm) deep in formed joints. Overfill joint and trim joint filler flush with top of joint after hardening. ### 3.14 CONCRETE SURFACE REPAIRS - A. Defective Concrete: Repair and patch defective areas when approved by Architect. Remove and replace concrete that cannot be repaired and patched to Architect's approval. - B. Patching Mortar: Mix dry-pack patching mortar, consisting of one part portland cement to two and one-half parts fine aggregate passing a No. 16 (1.18-mm) sieve, using only enough water for handling and placing. - C. Repairing Formed Surfaces: Surface defects include color and texture irregularities, cracks, spalls, air bubbles, honeycombs, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning. - 1. Immediately after form removal, cut out honeycombs, rock pockets, and voids more than 1/2 inch (13 mm) in any dimension in solid concrete, but not less than 1 inch (25 mm) in depth. Make edges of cuts perpendicular to concrete surface. Clean, dampen with water, and brush-coat holes and voids with bonding agent. Fill and compact with patching mortar before bonding agent has dried. Fill form-tie voids with patching mortar or cone plugs secured in place with bonding agent. - 2. Repair defects on surfaces exposed to view by blending white portland cement and standard portland cement so that, when dry, patching mortar will match surrounding color. Patch a test area at inconspicuous locations to verify mixture and color match before proceeding with patching. Compact mortar in place and strike off slightly higher than surrounding surface. - 3. Repair defects on concealed formed surfaces that affect concrete's durability and structural performance as determined by Architect. - D. Repairing Unformed Surfaces: Test unformed surfaces, such as floors and slabs, for finish and verify surface tolerances specified for each surface. Correct low and high areas. Test surfaces sloped to drain for trueness of slope and smoothness; use a sloped template. - Repair finished surfaces containing defects. Surface defects include spalls, popouts, honeycombs, rock pockets, crazing and cracks in excess of 0.01 inch (0.25 mm) wide or that penetrate to reinforcement or completely through unreinforced sections regardless of width, and other objectionable conditions. - 2. After concrete has cured at least 14 days, correct high areas by grinding. - Correct localized low areas during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete. - 4. Correct other low areas scheduled to receive floor coverings with a repair underlayment. Prepare, mix, and apply repair underlayment and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface. Feather edges to match adjacent floor elevations. - 5. Correct other low areas scheduled to remain exposed with a repair topping. Cut out low areas to ensure a minimum repair topping depth of 1/4 inch (6 mm) to match adjacent floor elevations. Prepare, mix, and apply repair topping and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface. - 6. Repair defective areas, except random cracks and single holes 1 inch (25 mm) or less in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts and expose steel reinforcement with at least a 3/4-inch (19-mm) clearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Mix patching concrete of same materials and mixture as original concrete except without coarse aggregate. Place, compact, and finish to blend with adjacent finished concrete. Cure in same manner as adjacent concrete. - 7. Repair random cracks and single holes 1 inch (25 mm) or less in diameter with patching mortar. Groove top of cracks and cut out holes to sound concrete and clean off dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding agent. Place patching mortar before bonding agent has dried. Compact patching mortar and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours. - E. Perform structural repairs of concrete, subject to Architect's approval, using epoxy adhesive and patching mortar. - F. Repair materials and installation not specified above may be used, subject to Architect's approval. ## 3.15 FIELD QUALITY CONTROL - A. Testing and Inspecting: Owner will engage a special inspector and a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports. - B. Testing and Inspecting: Engage a qualified testing and inspecting agency to perform tests and inspections and to submit reports. - C. Inspections: - 1. Steel reinforcement placement. - 2. Steel reinforcement welding. - 3. Verification of use of required design mixture. - 4. Concrete placement, including conveying and depositing. - 5. Curing procedures and maintenance of curing temperature. - D. Concrete Tests: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements: - 1. Testing Frequency: Obtain at least one composite sample for each 100 cu. yd. (76 cu. m) or fraction thereof of each concrete mixture placed each day. - a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used. - 2. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change. - 3. Air Content: ASTM C 231, pressure method, for normal-weight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture. - Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F (4.4 deg C) and below and when 80 deg F (27 deg C) and above, and one test for each composite sample. - 5. Unit Weight: ASTM C 567, fresh unit weight of structural lightweight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture. - 6. Compression Test Specimens: ASTM C 31/C 31M. - Cast and laboratory cure two sets of two standard cylinder specimens for each composite sample. - b. Cast and field cure two sets of two standard cylinder specimens for each composite sample. - 7. Compressive-Strength Tests: ASTM C 39/C 39M; test one set of two laboratory-cured specimens at 7 days and one set of two specimens at 28 days. - Test one set of two field-cured specimens at 7 days and one set of two specimens at 28 days. - b. A compressive-strength test shall be the average compressive strength from a set of two specimens obtained from same composite sample and tested at age indicated. - 8. When strength of field-cured cylinders is less than 85 percent of companion laboratory-cured cylinders, Contractor shall evaluate operations and provide corrective procedures for protecting and curing in-place concrete. - 9. Strength of each concrete mixture will be satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi (3.4 MPa). - 10. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests. - 11. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete. - 12. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect. Testing and inspecting agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C 42/C 42M or by other methods as directed by Architect. - 13. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements. - 14. Correct deficiencies in the Work that test reports and inspections indicate dos not comply with the Contract Documents. - E. Measure floor and slab flatness and levelness according to ASTM E 1155 (ASTM E 1155M) within 48 hours of finishing. END OF SECTION 033000 ## SECTION 051200 - STRUCTURAL STEEL FRAMING ### PART 1 - GENERAL ### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY - A. This Section includes the following: - 1. Structural steel. -
2. Grout. - B. Related Sections include the following: - 1. Division 01 Section "Quality Requirements" for independent testing agency procedures and administrative requirements. - 2. Division 05 Section "Steel Decking" for field installation of shear connectors. - 3. Division 09 painting Sections for surface preparation and priming requirements. - 4. Division 13 Section "Metal Building Systems" for structural steel. ## 1.3 DEFINITIONS - A. Structural Steel: Elements of structural-steel frame, as classified by AISC's "Code of Standard Practice for Steel Buildings and Bridges," that support design loads. - B. Architecturally Exposed Structural Steel: Structural steel designated as architecturally exposed structural steel in the Contract Documents. ### 1.4 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Shop Drawings: Show fabrication of structural-steel components. - 1. Include details of cuts, connections, splices, camber, holes, and other pertinent data. - 2. Include embedment drawings. - 3. Indicate welds by standard AWS symbols, distinguishing between shop and field welds, and show size, length, and type of each weld. - 4. Indicate type, size, and length of bolts, distinguishing between shop and field bolts. Identify pretensioned and slip-critical high-strength bolted connections. - C. Welding certificates. - D. Qualification Data: For - E. Source quality-control test reports. Installer, fabricator, professional engineer, testing agency. ### 1.5 QUALITY ASSURANCE - A. Installer Qualifications: A qualified installer who participates in the AISC Quality Certification Program and is designated an AISC-Certified Erector, Category CASE. - B. Shop-Painting Applicators: Qualified according to AISC's Sophisticated Paint Endorsement P1 or SSPC-QP 3, "Standard Procedure for Evaluating Qualifications of Shop Painting Applicators." - C. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code--Steel." - D. Comply with applicable provisions of the following specifications and documents: - 1. AISC's "Code of Standard Practice for Steel Buildings and Bridges." - 2. AISC's "Seismic Provisions for Structural Steel Buildings" and "Supplement No. 2." - 3. AISC's Load and Resistance Factor Design Specification for Structural Steel Buildings." - 4. AISC's "Specification for the Design of Steel Hollow Structural Sections." - 5. RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts." - E. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination." ## 1.6 DELIVERY, STORAGE, AND HANDLING - A. Store materials to permit easy access for inspection and identification. Keep steel members off ground and spaced by using pallets, dunnage, or other supports and spacers. Protect steel members and packaged materials from erosion and deterioration. - 1. Store fasteners in a protected place. Clean and relubricate bolts and nuts that become dry or rusty before use. - 2. Do not store materials on structure in a manner that might cause distortion, damage, or overload to members or supporting structures. Repair or replace damaged materials or structures as directed. #### 1.7 COORDINATION A. Furnish anchorage items to be embedded in or attached to other construction without delaying the Work. Provide setting diagrams, sheet metal templates, instructions, and directions for installation. # PART 2 - PRODUCTS # 2.1 STRUCTURAL-STEEL MATERIALS - A. W-Shapes: ASTM A 992/A 992M Grade 50 (345) - B. Channels, Angles, ASTM A 36/A 36M - C. Plate and Bar: ASTM A 36/A 36M - D. Welding Electrodes: Comply with AWS requirements. ## 2.2 BOLTS, CONNECTORS, AND ANCHORS - A. High-Strength Bolts, Nuts, and Washers: ASTM A 325 (ASTM A 325M), Type 1, heavy hex steel structural bolts; ASTM A 563 (ASTM A 563M) heavy hex carbon-steel nuts; and ASTM F 436 (ASTM F 436M) hardened carbon-steel washers. - 1. Finish: Plain coating - B. Threaded Rods: ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6)]. - 1. Nuts: ASTM A 563 (ASTM A 563M) [heavy]hex carbon steel. - 2. Washers: ASTM F 436 (ASTM F 436M) hardened ASTM A 36/A 36M] carbon steel. - 3. Finish: Plain coating ### 2.3 PRIMER A. Primer: Fabricator's standard lead- and chromate-free, nonasphaltic, rust-inhibiting primer. ### 2.4 GROUT - A. Cement Grout: Portland cement, ASTM C 150, Type I; and clean, natural sand, ASTM C 404, Size No. 2. Mix at ratio of 1 part cement to 2-1/2 parts sand, by volume, with minimum water required for placement and hydration. - B. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time. ### 2.5 FABRICATION - A. Structural Steel: Fabricate and assemble in shop to greatest extent possible. Fabricate according to AISC's "Code of Standard Practice for Steel Buildings and Bridges" and AISC's Load and Resistance Factor Design Specification for Structural Steel Buildings." - Complete structural-steel assemblies, including welding of units, before starting shop-priming operations. - B. Bolt Holes: Cut, drill or punch standard bolt holes perpendicular to metal surfaces. - C. Finishing: Accurately finish ends of columns and other members transmitting bearing loads. - D. Cleaning: Clean and prepare steel surfaces that are to remain unpainted according to SSPC-SP 1, "Solvent Cleaning " - E. Welded Door Frames: Build up welded door frames attached to structural steel. Weld exposed joints continuously and grind smooth. Plug-weld fixed steel bar stops to frames. Secure removable stops to frames with countersunk, cross-recessed head machine screws, uniformly spaced not more than 10 inches (250 mm) o.c., unless otherwise indicated. - F. Holes: Provide holes required for securing other work to structural steel and for passage of other work through steel framing members. - 1. Cut, drill, or punch holes perpendicular to steel surfaces. Do not thermally cut bolt holes or enlarge holes by burning. - 2. Base-Plate Holes: Cut, drill, mechanically thermal cut, or punch holes perpendicular to steel surfaces. - 3. Weld threaded nuts to framing and other specialty items indicated to receive other work. ### 2.6 SHOP PRIMING - A. Shop prime steel surfaces except the following: - 1. Surfaces embedded in concrete or mortar. Extend priming of partially embedded members to a depth of 2 inches (50 mm). - 2. Surfaces to be field welded. - 3. Surfaces to be high-strength bolted with slip-critical connections. - 4. Surfaces to receive sprayed fire-resistive materials. - 5. Galvanized surfaces. - B. Surface Preparation: Clean surfaces to be painted. Remove loose rust and mill scale and spatter, slag, or flux deposits. Prepare surfaces according to the following specifications and standards: - 1. SSPC-SP 2, "Hand Tool Cleaning." - C. Priming: Immediately after surface preparation, apply primer according to manufacturer's written instructions and at rate recommended by SSPC to provide a dry film thickness of not less than 1.5 mils (0.038 mm). Use priming methods that result in full coverage of joints, corners, edges, and exposed surfaces. - 1. Stripe paint corners, crevices, bolts, welds, and sharp edges. - Apply two coats of shop paint to inaccessible surfaces after assembly or erection. Change color of second coat to distinguish it from first. - D. Painting: Apply a 1-coat, nonasphaltic primer complying with SSPC-PS Guide 7.00, "Painting System Guide 7.00: Guide for Selecting One-Coat Shop Painting Systems," to provide a dry film thickness of not less than 1.5 mils (0.038 mm). ## 2.7 SOURCE QUALITY CONTROL - A. Owner will engage an independent testing and inspecting agency to perform shop tests and inspections and prepare test reports. - 1. Provide testing agency with access to places where structural-steel work is being fabricated or produced to perform tests and inspections. - B. Correct deficiencies in Work that test reports and inspections indicate does not comply with the Contract Documents. - C. Bolted Connections: Shop-bolted connections will be tested and inspected according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts." - D. Welded Connections: In addition to visual inspection, shop-welded connections will be tested and inspected according to AWS D1.1 and the following inspection procedures, at testing agency's option: - 1. Liquid Penetrant Inspection: ASTM E 165. - 2. Magnetic Particle Inspection: ASTM E 709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration will not be accepted. - 3. Ultrasonic Inspection: ASTM E 164. - 4. Radiographic Inspection: ASTM E 94. ### PART 3 - EXECUTION ### 3.1 EXAMINATION - A. Verify elevations of concrete- and masonry-bearing surfaces and locations of anchor rods, bearing plates, and other embedments, with steel erector present, for compliance with requirements. - B. Proceed with installation only after unsatisfactory conditions have been corrected. #### 3.2 PREPARATION - A. Provide temporary shores, guys, braces, and other supports during erection to keep structural steel secure, plumb, and in alignment against temporary construction loads and loads equal in intensity to design loads. Remove temporary supports when permanent structural steel, connections, and bracing are in place, unless otherwise indicated. - 1. Do not remove temporary shoring supporting composite deck construction until cast-in-place concrete has attained its design compressive strength. ### 3.3 ERECTION - A. Set structural steel accurately in locations and to elevations indicated and according to AISC's "Code of Standard Practice for Steel Buildings and Bridges" and Load and Resistance Factor Design Specification for Structural Steel Buildings." - B. Base and Bearing Plates: Clean concrete- and masonry-bearing surfaces
of bond-reducing materials, and roughen surfaces prior to setting base and bearing plates. Clean bottom surface of base and bearing plates. - C. Maintain erection tolerances of structural steel within AISC's "Code of Standard Practice for Steel Buildings and Bridges." - D. Align and adjust various members forming part of complete frame or structure before permanently fastening. Before assembly, clean bearing surfaces and other surfaces that will be in permanent contact with members. Perform necessary adjustments to compensate for discrepancies in elevations and alignment. - 1. Level and plumb individual members of structure. - 2. Make allowances for difference between temperature at time of erection and mean temperature when structure is completed and in service. - E. Remove erection bolts on welded, architecturally exposed structural steel; fill holes with plug welds; and grind smooth at exposed surfaces. - F. Do not use thermal cutting during erection - G. Do not enlarge unfair holes in members by burning or using drift pins. Ream holes that must be enlarged to admit bolts. ## 3.4 FIELD CONNECTIONS - A. High-Strength Bolts: Install high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts" for type of bolt and type of joint specified. - 1. Joint Type: Snug tightened. - B. Weld Connections: Comply with AWS D1.1 for welding procedure specifications, tolerances, appearance, and quality of welds and for methods used in correcting welding work. - 1. Comply with AISC's "Code of Standard Practice for Steel Buildings and Bridges" and "Load and Resistance Factor Design Specification for Structural Steel Buildings" for bearing, adequacy of temporary connections, alignment, and removal of paint on surfaces adjacent to field welds. - 2. Remove backing bars or runoff tabs, back gouge, and grind steel smooth. - Assemble and weld built-up sections by methods that will maintain true alignment of axes without exceeding tolerances of AISC's "Code of Standard Practice for Steel Buildings and Bridges" for mill material. - Verify that weld sizes, fabrication sequence, and equipment used for architecturally exposed structural steel will limit distortions to allowable tolerances. Prevent weld show-through on exposed steel surfaces. - a. Grind butt welds flush. - b. Grind or fill exposed fillet welds to smooth profile. Dress exposed welds. ### 3.5 FIELD QUALITY CONTROL - A. Testing Agency: Owner will engage a qualified independent testing and inspecting agency to inspect field welds and high-strength bolted connections. - B. Bolted Connections: Shop-bolted connections will be tested and inspected according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts." - C. Welded Connections: Field welds will be visually inspected according to AWS D1.1. - D. Correct deficiencies in Work that test reports and inspections indicate does not comply with the Contract Documents. # 3.6 REPAIRS AND PROTECTION - A. Repair damaged galvanized coatings on galvanized items with galvanized repair paint according to ASTM A 780 and manufacturer's written instructions. - B. Touchup Painting: After installation, promptly clean, prepare, and prime or reprime field connections, rust spots, and abraded surfaces of prime-painted joists and accessories, bearing plates, and abutting structural steel. - 1. Clean and prepare surfaces by SSPC-SP 2 hand-tool cleaning or SSPC-SP 3 power-tool cleaning. - 2. Apply a compatible primer of same type as shop primer used on adjacent surfaces. - C. Touchup Painting: Cleaning and touchup painting are specified in Division 09 painting Sections. # END OF SECTION 051200 #### SECTION 054000 - COLD-FORMED METAL FRAMING ### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following: - 1. Exterior load-bearing wall framing. - 2. Interior load-bearing wall framing. - 3. Exterior non-load-bearing wall framing. - B. Related Sections include the following: - 1. Division 05 Section "Metal Fabrications" for masonry shelf angles and connections. - 2. Division 09 Section "Gypsum Board Shaft Wall Assemblies" for interior non-load-bearing, metal-stud-framed, shaft-wall assemblies. ## 1.3 PERFORMANCE REQUIREMENTS - A. Structural Performance: Provide cold-formed metal framing capable of withstanding design loads within limits and under conditions indicated. - 1. Design Loads: As indicated - 2. Deflection Limits: Design framing systems to withstand design loads without deflections greater than the following: - a. Interior Wall Framing: Horizontal deflection of 1/240 of the wall height under a horizontal load of 5 lbf/sq. ft. (239 Pa). - b. Floor Joist Framing: Vertical deflection of 1/360 for live loads and. - c. Ceiling Joist Framing: Vertical deflection of 1/360 of the span. - B. Cold-Formed Steel Framing, General: Design according to AISI's "Standard for Cold-Formed Steel Framing General Provisions." - 1. Headers: Design according to AISI's "Standard for Cold-Formed Steel Framing Header Design." ## 1.4 SUBMITTALS - A. Product Data: For each type of cold-formed metal framing product and accessory indicated. - B. Shop Drawings: Show layout, spacings, sizes, thicknesses, and types of cold-formed metal framing; fabrication; and fastening and anchorage details, including mechanical fasteners. Show reinforcing channels, opening framing, supplemental framing, strapping, bracing, bridging, splices, accessories, connection details, and attachment to adjoining work. - 1. For cold-formed metal framing indicated to comply with design loads, include structural analysis data signed and sealed by the qualified professional engineer responsible for their preparation. - C. Welding certificates. - D. Qualification Data: For testing agency. - E. Product Test Reports: From a qualified testing agency, unless otherwise stated, indicating that each of the following complies with requirements, based on evaluation of comprehensive tests for current products: - 1. Steel sheet. - 2. Power-actuated anchors. - 3. Mechanical fasteners. - 4. Miscellaneous structural clips and accessories. - F. Research/Evaluation Reports: For cold-formed metal framing. ### 1.5 QUALITY ASSURANCE - A. Engineering Responsibility: Preparation of Shop Drawings, design calculations, and other structural data by a qualified professional engineer. - B. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of cold-formed metal framing that are similar to those indicated for this Project in material, design, and extent. - C. Testing Agency Qualifications: An independent testing agency, acceptable to authorities having jurisdiction, qualified according to ASTM E 329 to conduct the testing indicated. - D. Product Tests: Mill certificates or data from a qualified independent testing agency, indicating steel sheet complies with requirements, including base-metal thickness, yield strength, tensile strength, total elongation, chemical requirements, and metallic-coating thickness. - E. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code-Steel," and AWS D1.3, "Structural Welding Code-Sheet Steel." - F. AISI Specifications and Standards: Comply with AISI's "North American Specification for the Design of Cold-Formed Steel Structural Members" and its "Standard for Cold-Formed Steel Framing General Provisions." - 1. Comply with AISI's "Standard for Cold-Formed Steel Framing Header Design." - G. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination." ## 1.6 DELIVERY, STORAGE, AND HANDLING - A. Protect cold-formed metal framing from corrosion, deformation, and other damage during delivery, storage, and handling. - B. Store cold-formed metal framing, protect with a waterproof covering, and ventilate to avoid condensation. #### PART 2 - PRODUCTS #### 2.1 MANUFACTURERS - A. Manufacturers: Subject to compliance with requirements, provide cold-formed metal framing by one of the following: - 1. Allied Studco. - 2. AllSteel Products, Inc. - 3. California Expanded Metal Products Company. - 4. Clark Steel Framing. - 5. Consolidated Fabricators Corp.; Building Products Division. - 6. Craco Metals Manufacturing, LLC. - 7. Custom Stud, Inc. - 8. Dale/Incor. - 9. Design Shapes in Steel. - 10. Dietrich Metal Framing; a Worthington Industries Company. - 11. Formetal Co. Inc. (The). - 12. Innovative Steel Systems. - 13. MarinoWare; a division of Ware Industries. - 14. Quail Run Building Materials, Inc. - 15. SCAFCO Corporation. - 16. Southeastern Stud & Components, Inc. - 17. Steel Construction Systems. - 18. Steeler, Inc. - 19. Super Stud Building Products, Inc. - 20. United Metal Products, Inc. ## 2.2 MATERIALS - A. Steel Sheet: ASTM A 1003/A 1003M, Structural Grade, Type H, metallic coated, of grade and coating weight as follows: - 1. Grade: As required by structural performance. - 2. Coating: G60 (Z180) ### 2.3 CEILING JOIST FRAMING - A. Steel Ceiling Joists: Manufacturer's standard C-shaped steel sections, of web depths indicated, punched with enlarged service holes, with stiffened flanges, and as follows: - 1. Minimum Base-Metal Thickness: [0.0329 inch (0.84 mm) - 2. Flange Width: 1-5/8 inches (41 mm) minimum. #### 2.4 FRAMING ACCESSORIES - A. Fabricate steel-framing accessories from steel sheet, ASTM A 1003/A 1003M, Structural Grade, Type H, metallic coated, of same grade and coating weight used for framing members. - B. Provide accessories of manufacturer's standard
thickness and configuration, unless otherwise indicated, as follows: - 1. Supplementary framing. - 2. Bracing, bridging, and solid blocking. - 3. Web stiffeners. - 4. Anchor clips. - End clips. - 6. Foundation clips. - 7. Gusset plates. - 8. Stud kickers, knee braces, and girts. - 9. Joist hangers and end closures. - 10. Hole reinforcing plates. - 11. Backer plates. ### 2.5 ANCHORS, CLIPS, AND FASTENERS - A. Steel Shapes and Clips: ASTM A 36/A 36M, zinc coated by hot-dip process according to ASTM A 123/A 123M. - B. Anchor Bolts: ASTM F 1554, Grade 36, threaded carbon-steel and carbon-steel nuts; and flat, hardened-steel washers; zinc coated. - C. Expansion Anchors: Fabricated from corrosion-resistant materials, with capability to sustain, without failure, a load equal to 5 times design load, as determined by testing per ASTM E 488 conducted by a qualified independent testing agency. - D. Power-Actuated Anchors: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with capability to sustain, without failure, a load equal to 10 times design load, as determined by testing per ASTM E 1190 conducted by a qualified independent testing agency. - E. Mechanical Fasteners: ASTM C 1513, corrosion-resistant-coated, self-drilling, self-tapping steel drill screws. - 1. Head Type: Low-profile head beneath sheathing, manufacturer's standard elsewhere. - F. Welding Electrodes: Comply with AWS standards. ### 2.6 MISCELLANEOUS MATERIALS - A. Galvanizing Repair Paint: ASTM A 780. - B. Shims: Load bearing, high-density multimonomer plastic, nonleaching. - C. Sealer Gaskets: Closed-cell neoprene foam, 1/4 inch (6.4 mm) thick, selected from manufacturer's standard widths to match width of bottom track or rim track members. ### 2.7 FABRICATION - A. Fabricate cold-formed metal framing and accessories plumb, square, and true to line, and with connections securely fastened, according to referenced AISI's specifications and standards, manufacturer's written instructions, and requirements in this Section. - 1. Fabricate framing assemblies using jigs or templates. - 2. Cut framing members by sawing or shearing; do not torch cut. - 3. Fasten cold-formed metal framing members by welding, screw fastening, clinch fastening, or riveting as standard with fabricator. Wire tying of framing members is not permitted. - Comply with AWS D1.3 requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work. - Locate mechanical fasteners and install according to Shop Drawings, with screw penetrating joined members by not less than three exposed screw threads. - 4. Fasten other materials to cold-formed metal framing by welding, bolting, or screw fastening, according to Shop Drawings. - B. Reinforce, stiffen, and brace framing assemblies to withstand handling, delivery, and erection stresses. Lift fabricated assemblies to prevent damage or permanent distortion. - C. Fabrication Tolerances: Fabricate assemblies level, plumb, and true to line to a maximum allowable tolerance variation of 1/8 inch in 10 feet (1:960) and as follows: - 1. Spacing: Space individual framing members no more than plus or minus 1/8 inch (3 mm) from plan location. Cumulative error shall not exceed minimum fastening requirements of sheathing or other finishing materials. - 2. Squareness: Fabricate each cold-formed metal framing assembly to a maximum out-of-square tolerance of 1/8 inch (3 mm). #### PART 3 - EXECUTION ### 3.1 EXAMINATION - A. Examine supporting substrates and abutting structural framing for compliance with requirements for installation tolerances and other conditions affecting performance. - 1. Proceed with installation only after unsatisfactory conditions have been corrected. ## 3.2 PREPARATION - A. Before sprayed fire-resistive materials are applied, attach continuous angles, supplementary framing, or tracks to structural members indicated to receive sprayed fire-resistive materials. - B. After applying sprayed fire-resistive materials, remove only as much of these materials as needed to complete installation of cold-formed framing without reducing thickness of fire-resistive materials below that are required to obtain fire-resistance rating indicated. Protect remaining fire-resistive materials from damage. - C. Install load bearing shims or grout between the underside of wall bottom track or rim track and the top of foundation wall or slab at stud or joist locations to ensure a uniform bearing surface on supporting concrete or masonry construction. - D. Install sealer gaskets to isolate the underside of wall bottom track or rim track and the top of foundation wall or slab at stud or joist locations. #### 3.3 INSTALLATION, GENERAL - A. Cold-formed metal framing may be shop or field fabricated for installation, or it may be field assembled. - B. Install cold-formed metal framing according to AISI's "Standard for Cold-Formed Steel Framing General Provisions" and to manufacturer's written instructions unless more stringent requirements are indicated. - C. Install shop- or field-fabricated, cold-formed framing and securely anchor to supporting structure. - 1. Screw, bolt, or weld wall panels at horizontal and vertical junctures to produce flush, even, true-toline joints with maximum variation in plane and true position between fabricated panels not exceeding 1/16 inch (1.6 mm). - D. Install cold-formed metal framing and accessories plumb, square, and true to line, and with connections securely fastened. - 1. Cut framing members by sawing or shearing; do not torch cut. - 2. Fasten cold-formed metal framing members by welding, screw fastening, clinch fastening, or riveting. Wire tying of framing members is not permitted. - a. Comply with AWS D1.3 requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work. - b. Locate mechanical fasteners and install according to Shop Drawings, and complying with requirements for spacing, edge distances, and screw penetration. - E. Install framing members in one-piece lengths unless splice connections are indicated for track or tension members. - F. Install temporary bracing and supports to secure framing and support loads comparable in intensity to those for which structure was designed. Maintain braces and supports in place, undisturbed, until entire integrated supporting structure has been completed and permanent connections to framing are secured. - G. Do not bridge building expansion and control joints with cold-formed metal framing. Independently frame both sides of joints. - H. Install insulation, specified in Division 07 Section "Thermal Insulation," in built-up exterior framing members, such as headers, sills, boxed joists, and multiple studs at openings, that are inaccessible on completion of framing work. - I. Fasten hole reinforcing plate over web penetrations that exceed size of manufacturer's standard punched openings. - J. Erection Tolerances: Install cold-formed metal framing level, plumb, and true to line to a maximum allowable tolerance variation of 1/8 inch in 10 feet (1:960) and as follows: - Space individual framing members no more than plus or minus 1/8 inch (3 mm) from plan location. Cumulative error shall not exceed minimum fastening requirements of sheathing or other finishing materials. ### 3.4 WALL INSTALLATION - A. Install continuous top and bottom tracks sized to match studs. Align tracks accurately and securely anchor at corners and ends, and at spacings as follows: - 1. Anchor Spacing: As shown on Shop Drawings. - B. Squarely seat studs against top and bottom tracks with gap not exceeding of 1/8 inch (3 mm) between the end of wall framing member and the web of track. Fasten both flanges of studs to top and bottom tracks. Space studs as follows: - 1. Stud Spacing: 16 inches (406 mm - C. Set studs plumb, except as needed for diagonal bracing or required for nonplumb walls or warped surfaces and similar configurations. - D. Align studs vertically where floor framing interrupts wall-framing continuity. Where studs cannot be aligned, continuously reinforce track to transfer loads. - E. Align floor and roof framing over studs. Where framing cannot be aligned, continuously reinforce track to transfer loads. - F. Anchor studs abutting structural columns or walls, including masonry walls, to supporting structure as indicated. - G. Install headers over wall openings wider than stud spacing. Locate headers above openings as indicated. Fabricate headers of compound shapes indicated or required to transfer load to supporting studs, complete with clip-angle connectors, web stiffeners, or gusset plates. - 1. Frame wall openings with not less than a double stud at each jamb of frame as indicated on Shop Drawings. Fasten jamb members together to uniformly distribute loads. - 2. Install runner tracks and jack studs above and below wall openings. Anchor tracks to jamb studs with clip angles or by welding, and space jack studs same as full-height wall studs. - H. Install supplementary framing, blocking, and bracing in stud framing indicated to support fixtures, equipment, services, casework, heavy trim, furnishings, and similar work requiring attachment to framing. - If type of supplementary support is not indicated, comply with stud manufacturer's written recommendations and industry standards in each case, considering weight or load resulting from item supported. - I. Install horizontal bridging in stud system, spaced as indicated on Shop Drawings. Fasten at each stud intersection. - Bridging: Cold-rolled steel channel, welded or mechanically fastened to webs of punched studs with a minimum of 2 screws into each flange of the clip angle for framing members up to 6 inches (150 mm) deep. - 2. Bridging: Combination of flat, taut, steel sheet straps of width and thickness indicated and studtrack solid blocking of width and thickness to match studs. Fasten flat straps
to stud flanges and secure solid blocking to stud webs or flanges. - 3. Bridging: Proprietary bridging bars installed according to manufacturer's written instructions. - J. Install steel sheet diagonal bracing straps to both stud flanges, terminate at and fasten to reinforced top and bottom tracks. Fasten clip-angle connectors to multiple studs at ends of bracing and anchor to structure. - K. Install miscellaneous framing and connections, including supplementary framing, web stiffeners, clip angles, continuous angles, anchors, and fasteners, to provide a complete and stable wall-framing system. ### 3.5 FIELD QUALITY CONTROL - A. Testing: Owner will engage a qualified independent testing and inspecting agency to perform field tests and inspections and prepare test reports. - B. Field and shop welds will be subject to testing and inspecting. - C. Testing agency will report test results promptly and in writing to Contractor and Architect. - D. Remove and replace work where test results indicate that it does not comply with specified requirements. - E. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements. ### 3.6 REPAIRS AND PROTECTION - A. Galvanizing Repairs: Prepare and repair damaged galvanized coatings on fabricated and installed cold-formed metal framing with galvanized repair paint according to ASTM A 780 and manufacturer's written instructions. - B. Provide final protection and maintain conditions, in a manner acceptable to manufacturer and Installer, that ensure that cold-formed metal framing is without damage or deterioration at time of Substantial Completion. END OF SECTION 054000 #### SECTION 055000 - METAL FABRICATIONS #### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following: - 1. Steel framing and supports for overhead doors. - 2. Steel framing and supports for mechanical and electrical equipment. - Steel framing and supports for applications where framing and supports are not specified in other Sections. - 4. Prefabricated building columns. - Shelf angles. - 6. Loose bearing and leveling plates. - Steel weld plates and angles for casting into concrete not specified in other Sections. - 8. Structural-steel door frames. - 9. Metal bollards. - 10. Pipe guards. - B. Products furnished, but not installed, under this Section include the following: - 1. Loose steel lintels. - Anchor bolts, steel pipe sleeves, and wedge-type inserts indicated to be cast into concrete or built into unit masonry. - C. Related Sections include the following: - 1. Division 03 Section "Cast-in-Place Concrete" for installing anchor bolts, steel pipe sleeves, wedge-type inserts and other items indicated to be cast into concrete. - 2. Division 05 Section "Structural Steel Framing." ## 1.3 PERFORMANCE REQUIREMENTS - A. Structural Performance of Ladders: Provide ladders capable of withstanding the effects of loads and stresses within limits and under conditions specified in ANSI A14.3. - B. Thermal Movements: Provide exterior metal fabrications that allow for thermal movements resulting from the following maximum change (range) in ambient and surface temperatures by preventing buckling, opening of joints, overstressing of components, failure of connections, and other detrimental effects. Base engineering calculation on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss. - Temperature Change (Range): 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces. ### 1.4 SUBMITTALS - A. Product Data: For the following: - 1. Nonslip aggregates and nonslip-aggregate surface finishes. - 2. Prefabricated building columns. - Metal nosings and treads. - 4. Paint products. - 5. Grout. - B. Shop Drawings: Show fabrication and installation details for metal fabrications. - 1. Include plans, elevations, sections, and details of metal fabrications and their connections. Show anchorage and accessory items. - 2. Provide templates for anchors and bolts specified for installation under other Sections. - 3. For installed products indicated to comply with design loads, include structural analysis data signed and sealed by the qualified professional engineer responsible for their preparation. - C. Mill Certificates: Signed by manufacturers of stainless-steel sheet certifying that products furnished comply with requirements. - D. Welding certificates. - E. Qualification Data: For professional engineer. #### 1.5 QUALITY ASSURANCE - A. Welding: Qualify procedures and personnel according to the following: - 1. AWS D1.1, "Structural Welding Code--Steel." - 2. AWS D1.2, "Structural Welding Code--Aluminum." - 3. AWS D1.3, "Structural Welding Code--Sheet Steel." - 4. AWS D1.6, "Structural Welding Code--Stainless Steel." #### 1.6 PROJECT CONDITIONS - A. Field Measurements: Verify actual locations of walls and other construction contiguous with metal fabrications by field measurements before fabrication and indicate measurements on Shop Drawings. - Established Dimensions: Where field measurements cannot be made without delaying the Work, establish dimensions and proceed with fabricating metal fabrications without field measurements. Coordinate wall and other contiguous construction to ensure that actual dimensions correspond to established dimensions. - 2. Provide allowance for trimming and fitting at site. ### 1.7 COORDINATION - A. Coordinate installation of anchorages for metal fabrications. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation. - B. Coordinate installation of steel weld plates and angles for casting into concrete that are specified in this Section but required for work of another Section. Deliver such items to Project site in time for installation. #### PART 2 - PRODUCTS ### 2.1 MANUFACTURERS - A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection: - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified. #### 2.2 METALS, GENERAL A. Metal Surfaces, General: Provide materials with smooth, flat surfaces, unless otherwise indicated. For metal fabrications exposed to view in the completed Work, provide materials without seam marks, roller marks, rolled trade names, or blemishes. #### 2.3 FERROUS METALS - A. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M. - B. Stainless-Steel Sheet, Strip, Plate, and Flat Bars: ASTM A 666, Type 304 or 316L. - C. Stainless-Steel Bars and Shapes: ASTM A 276, Type 304 or 316L. - D. Rolled-Steel Floor Plate: ASTM A 786/A 786M, rolled from plate complying with ASTM A 36/A 36M or ASTM A 283/A 283M, Grade C or D. - E. Rolled-Stainless-Steel Floor Plate: ASTM A 793. - F. Steel Tubing: ASTM A 500, cold-formed steel tubing. - G. Steel Pipe: ASTM A 53/A 53M, standard weight (Schedule 40), unless another weight is indicated or required by structural loads. - H. Cast Iron: ASTM A 48/A 48M, Class 30, unless another class is indicated or required by structural loads. ### 2.4 NONFERROUS METALS - A. Aluminum Plate and Sheet: ASTM B 209 (ASTM B 209M), Alloy 6061-T6. - B. Aluminum Extrusions: ASTM B 221 (ASTM B 221M), Alloy 6063-T6. - C. Aluminum-Alloy Rolled Tread Plate: ASTM B 632/B 632M, Alloy 6061-T6. - D. Aluminum Castings: ASTM B 26/B 26M, Alloy 443.0-F. - E. Bronze Plate, Sheet, Strip, and Bars: ASTM B 36/B 36M, Alloy UNS No. C28000 (muntz metal, 60 percent copper). - F. Bronze Extrusions: ASTM B 455, Alloy UNS No. C38500 (extruded architectural bronze). - G. Bronze Castings: ASTM B 584, Alloy UNS No. C83600 (leaded red brass) or No. C84400 (leaded semired brass). - H. Nickel Silver Extrusions: ASTM B 151/B 151M, Alloy UNS No. C74500. - I. Nickel Silver Castings: ASTM B 584, Alloy UNS No. C97600 (20 percent leaded nickel bronze). #### 2.5 FASTENERS - A. General: Unless otherwise indicated, provide Type 304 or 316 stainless-steel fasteners for exterior use and zinc-plated fasteners with coating complying with ASTM B 633, Class Fe/Zn 5, at exterior walls. Provide stainless-steel fasteners for fastening aluminum. Select fasteners for type, grade, and class required. - B. Steel Bolts and Nuts: Regular hexagon-head bolts, ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6); with hex nuts, ASTM A 563 (ASTM A 563M); and, where indicated, flat washers. - C. Stainless-Steel Bolts and Nuts: Regular hexagon-head annealed stainless-steel bolts, nuts and, where indicated, flat washers; ASTM F 593 (ASTM F 738M) for bolts and ASTM F 594 (ASTM F 836M) for nuts, Alloy Group 1 (A1) or 2 (A4). - D. Anchor Bolts: ASTM F 1554, Grade 36. - 1. Provide hot-dip or mechanically deposited, zinc-coated anchor bolts where item being fastened is indicated to be galvanized. - E. Eyebolts: ASTM A 489. - F. Machine Screws: ASME B18.6.3 (ASME B18.6.7M). - G. Lag Bolts: ASME B18.2.1 (ASME B18.2.3.8M). - H. Plain Washers: Round, ASME B18.22.1 (ASME B18.22M). - I. Lock Washers: Helical, spring type, ASME B18.21.1 (ASME B18.21.2M). - J. Cast-in-Place Anchors in Concrete: Anchors capable of sustaining, without failure, a load equal to four times the load imposed, as determined by testing according to ASTM E 488, conducted by a qualified independent testing agency. - Threaded or wedge type; galvanized ferrous castings, either ASTM A 47/A 47M malleable iron or ASTM A 27/A 27M cast steel. Provide bolts, washers, and shims as needed, hot-dip galvanized per ASTM A 153/A 153M. - K. Expansion Anchors: Anchor bolt and sleeve assembly with capability to sustain, without
failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing according to ASTM E 488, conducted by a qualified independent testing agency. - Material for Anchors in Interior Locations: Carbon-steel components zinc-plated to comply with ASTM B 633, Class Fe/Zn 5. - Material for Anchors in Exterior Locations: Alloy Group 1 (A1) or 2 (A4) stainless-steel bolts complying with ASTM F 593 (ASTM F 738M) and nuts complying with ASTM F 594 (ASTM F 836M). ### 2.6 MISCELLANEOUS MATERIALS - A. Welding Rods and Bare Electrodes: Select according to AWS specifications for metal alloy welded. - B. Shop Primers: Provide primers that comply with Division 09 painting Sections. - Universal Shop Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer complying with MPI#79. - 1. Use primer with a VOC content of 420 g/L (3.5 lb/gal.) or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24). - 2. Use primer containing pigments that make it easily distinguishable from zinc-rich primer. - D. Zinc-Rich Primer: Complying with SSPC-Paint 20 or SSPC-Paint 29 and compatible with topcoat. - Use primer with a VOC content of 420 g/L (3.5 lb/gal.) or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24). - Products: - a. Benjamin Moore & Co.; Epoxy Zinc-Rich Primer CM18/19. - b. Carboline Company; Carbozinc 621. - c. ICI Devoe Coatings; Catha-Coat 313. - d. International Coatings Limited; Interzinc 315 Epoxy Zinc-Rich Primer. - e. PPG Architectural Finishes, Inc.; Aquapon Zinc-Rich Primer 97-670. - f. Sherwin-Williams Company (The); Corothane I GalvaPac Zinc Primer. - g. Tnemec Company, Inc.; Tneme-Zinc 90-97. - E. Galvanizing Repair Paint: High-zinc-dust-content paint for regalvanizing welds in steel, complying with SSPC-Paint 20. - F. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187. - G. Nonshrink, Metallic Grout: Factory-packaged, ferrous-aggregate grout complying with ASTM C 1107, specifically recommended by manufacturer for heavy-duty loading applications. - H. Nonshrink, Nonmetallic Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107. Provide grout specifically recommended by manufacturer for interior and exterior applications. - I. Concrete Materials and Properties: Comply with requirements in Division 03 Section "Cast-in-Place Concrete" for normal-weight, air-entrained, ready-mix concrete with a minimum 28-day compressive strength of 3000 psi (20 MPa), unless otherwise indicated. ## 2.7 FABRICATION, GENERAL - A. Shop Assembly: Preassemble items in the shop to greatest extent possible. Disassemble units only as necessary for shipping and handling limitations. Use connections that maintain structural value of joined pieces. Clearly mark units for reassembly and coordinated installation. - B. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch (1 mm), unless otherwise indicated. Remove sharp or rough areas on exposed surfaces. - C. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work. - D. Form exposed work true to line and level with accurate angles and surfaces and straight edges. - E. Weld corners and seams continuously to comply with the following: - Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals. - 2. Obtain fusion without undercut or overlap. - 3. Remove welding flux immediately. - 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface. - F. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners where possible. Where exposed fasteners are required, use Phillips flat-head (countersunk) screws or bolts, unless otherwise indicated. Locate joints where least conspicuous. - G. Fabricate seams and other connections that will be exposed to weather in a manner to exclude water. Provide weep holes where water may accumulate. - H. Cut, reinforce, drill, and tap metal fabrications as indicated to receive finish hardware, screws, and similar items. - I. Provide for anchorage of type indicated; coordinate with supporting structure. Space anchoring devices to secure metal fabrications rigidly in place and to support indicated loads. - 1. Where units are indicated to be cast into concrete or built into masonry, equip with integrally welded steel strap anchors, 1/8 by 1-1/2 inches (3.2 by 38 mm), with a minimum 6-inch (150-mm) embedment and 2-inch (50-mm) hook, not less than 8 inches (200 mm) from ends and corners of units and 24 inches (600 mm) o.c., unless otherwise indicated. #### 2.8 MISCELLANEOUS FRAMING AND SUPPORTS - A. General: Provide steel framing and supports not specified in other Sections as needed to complete the Work. - B. Fabricate units from steel shapes, plates, and bars of welded construction, unless otherwise indicated. Fabricate to sizes, shapes, and profiles indicated and as necessary to receive adjacent construction retained by framing and supports. Cut, drill, and tap units to receive hardware, hangers, and similar items. - 1. Fabricate units from slotted channel framing where indicated. - 2. Furnish inserts if units are installed after concrete is placed. - C. Galvanize miscellaneous framing and supports where indicated. - D. Prime miscellaneous framing and supports with zinc-rich primer where indicated. ### 2.9 PREFABRICATED BUILDING COLUMNS - A. General: Provide prefabricated building columns consisting of load-bearing structural-steel members protected by insulating concrete fireproofing encased in an outer non-load-bearing steel shell. - B. Column Configuration: Provide columns of sizes and shapes indicated. Fabricate connections to comply with details shown or as needed to suit type of structure indicated. - Concrete Fill: Manufacturer's standard structural concrete, with minimum compressive strength of 4200 psi (29 MPa), machine mixed and mechanically vibrated during placement to produce concrete core free of voids. ### C. Manufacturers: - 1. Black Rock Column, Inc. - 2. Dean, George H., Inc. - 3. Firetrol Division; Dean Lally L. P. ### 2.10 STEEL WELD PLATES AND ANGLES A. Provide steel weld plates and angles not specified in other Sections, for items supported from concrete construction as needed to complete the Work. Provide each unit with not less than two integrally welded steel strap anchors for embedding in concrete. ### 2.11 STRUCTURAL-STEEL DOOR FRAMES - A. Fabricate structural-steel door frames from steel shapes, plates, and bars of size and to dimensions indicated, fully welded together, with 5/8-by-1-1/2-inch (16-by-38-mm) steel channel stops, unless otherwise indicated. Plug-weld built-up members and continuously weld exposed joints. Secure removable stops to frame with countersunk machine screws, uniformly spaced at not more than 10 inches (250 mm) o.c. Reinforce frames and drill and tap as necessary to accept finish hardware. - 1. Provide with integrally welded steel strap anchors for securing door frames into adjoining concrete or masonry. - B. Extend bottom of frames to floor elevation indicated with steel angle clips welded to frames for anchoring frame to floor with expansion shields and bolts. - C. Galvanize exterior steel frames and interior steel frames, where indicated. - D. Prime exterior steel frames and interior steel frames, where indicated with zinc-rich primer. #### 2.12 MISCELLANEOUS STEEL TRIM - A. Unless otherwise indicated, fabricate units from steel shapes, plates, and bars of profiles shown with continuously welded joints and smooth exposed edges. Miter corners and use concealed field splices where possible. - B. Provide cutouts, fittings, and anchorages as needed to coordinate assembly and installation with other work. - Provide with integrally welded steel strap anchors for embedding in concrete or masonry construction. - C. Galvanize exterior miscellaneous steel trim and interior miscellaneous steel trim, where indicated. - D. Prime exterior miscellaneous steel trim and interior miscellaneous steel trim, where indicated with zinc-rich primer. ### 2.13 METAL BOLLARDS - A. Fabricate metal bollards from Schedule 80 steel pipe. - 1. Cap bollards with 1/4-inch- (6.4-mm-) thick steel plate. - 2. Where bollards are indicated to receive push-button controls for door operators, provide necessary cutouts for push-button controls and hole for wire. - B. Fabricate bollards with 3/8-inch- (9.5-mm-) thick steel baseplates for bolting to concrete slab. Drill baseplates at all 4 corners for 3/4-inch (19-mm) anchor bolts. - 1. Where bollards are to be anchored to sloping concrete slabs, angle baseplates for plumb alignment of bollards. - C. Fabricate sleeves for bollard anchorage from steel pipe with 1/4-inch- (6.4-mm-) thick steel plate welded to bottom of sleeve. Make sleeves not less than 8 inches (200 mm) deep and 3/4 inch (19 mm) larger than OD of bollard. - D. Fabricate internal sleeves for removable bollards from Schedule 40 steel pipe or 1/4-inch (6.4-mm) wall-thickness steel tubing with an OD approximately 1/16 inch (1.5 mm) less than ID of bollards. Match drill sleeve and bollard for 3/4 inch (19 mm) steel machine bolt. ### 2.14 PIPE GUARDS - A. Fabricate pipe guards from 3/8-inch- (9.5-mm-) thick by 12-inch- (300-mm-) wide steel plate, bent to fit flat against the wall or column at both ends and to fit around pipe with 2-inch (50-mm) clearance between pipe and pipe guard. Drill each end for two 3/4-inch (19-mm) anchor bolts. - B. Galvanize pipe guards after fabrication. ## 2.15 FINISHES, GENERAL - A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for
applying and designating finishes. - B. Finish metal fabrications after assembly. #### 2.16 STEEL AND IRON FINISHES - A. Galvanizing: Hot-dip galvanize items as indicated to comply with applicable standard listed below: - 1. ASTM A 123/A 123M, for galvanizing steel and iron products. - 2. ASTM A 153/A 153M, for galvanizing steel and iron hardware. - B. Preparation for Shop Priming: Prepare uncoated ferrous-metal surfaces to comply with minimum requirements indicated below for SSPC surface preparation specifications and environmental exposure conditions of installed metal fabrications: - Exteriors (SSPC Zone 1B) and Items Indicated to Receive Zinc-Rich Primer: SSPC-SP 6/NACE No. 3, "Commercial Blast Cleaning." - 2. Interiors (SSPC Zone 1A): SSPC-SP 3, "Power Tool Cleaning." - C. Shop Priming: Apply shop primer to uncoated surfaces of metal fabrications, except those with galvanized finishes and those to be embedded in concrete, sprayed-on fireproofing, or masonry, unless otherwise indicated. Comply with SSPC-PA 1, "Paint Application Specification No. 1: Shop, Field, and Maintenance Painting of Steel," for shop painting. - 1. Stripe paint corners, crevices, bolts, welds, and sharp edges. ## 2.17 STAINLESS-STEEL FINISHES - A. Remove tool and die marks and stretch lines or blend into finish. - B. Grind and polish surfaces to produce uniform, directionally textured, polished finish indicated, free of cross scratches. Run grain with long dimension of each piece. - C. Bright, Directional Satin Finish: No. 4. - D. Dull Satin Finish: No. 6. - E. When polishing is completed, passivate and rinse surfaces. Remove embedded foreign matter and leave surfaces chemically clean. ### 2.18 ALUMINUM FINISHES - A. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes. - B. As-Fabricated Finish: AA-M10 (Mechanical Finish: as fabricated, unspecified). - C. Class I, Clear Anodic Finish: AA-M12C22A41 (Mechanical Finish: nonspecular as fabricated; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611. ## 2.19 COPPER-ALLOY FINISHES - A. Finish designations for copper alloys comply with the system established for designating copper-alloy finish systems defined in NAAMM's "Metal Finishes Manual for Architectural and Metal Products." - B. Cast-Bronze Nickel Silver Finish: M12 (Mechanical Finish: matte finish, as fabricated). - C. Extruded-Bronze Finish: M11 (Mechanical Finish: specular, as fabricated). - D. Bronze Plate, Sheet, Strip, and Bar Finish: M10 (Mechanical Finish: unspecified, as fabricated). ## PART 3 - EXECUTION ## 3.1 INSTALLATION, GENERAL - A. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal fabrications. Set metal fabrications accurately in location, alignment, and elevation; with edges and surfaces level, plumb, true, and free of rack; and measured from established lines and levels. - B. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections. - C. Field Welding: Comply with the following requirements: - Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals. - 2. Obtain fusion without undercut or overlap. - 3. Remove welding flux immediately. - 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface. - D. Fastening to In-Place Construction: Provide anchorage devices and fasteners where metal fabrications are required to be fastened to in-place construction. Provide threaded fasteners for use with concrete and masonry inserts, toggle bolts, through bolts, lag bolts, wood screws, and other connectors. - E. Provide temporary bracing or anchors in formwork for items that are to be built into concrete, masonry, or similar construction. F. Corrosion Protection: Coat concealed surfaces of aluminum that will come into contact with grout, concrete, masonry, wood, or dissimilar metals with a heavy coat of bituminous paint. #### 3.2 INSTALLING MISCELLANEOUS FRAMING AND SUPPORTS - A. General: Install framing and supports to comply with requirements of items being supported, including manufacturers' written instructions and requirements indicated on Shop Drawings. - B. Anchor supports for operable partitions securely to and rigidly brace from building structure. - C. Support steel girders on solid grouted masonry, concrete, or steel pipe columns. Secure girders with anchor bolts embedded in grouted masonry or concrete or with bolts through top plates of pipe columns. - 1. Where grout space under bearing plates is indicated for girders supported on concrete or masonry, install as specified in "Installing Bearing and Leveling Plates" Article. - D. Install pipe columns on concrete footings with grouted baseplates. Position and grout column baseplates as specified in "Installing Bearing and Leveling Plates" Article. - 1. Grout baseplates of columns supporting steel girders after girders are installed and leveled. #### 3.3 INSTALLING PREFABRICATED BUILDING COLUMNS A. Install prefabricated building columns to comply with AISC's "Specification for Structural Steel Buildings Allowable Stress Design and Plastic Design with Commentary" and with requirements applicable to listing and labeling for fire-resistance rating indicated. #### 3.4 INSTALLING METAL BOLLARDS - A. Anchor bollards in concrete with pipe sleeves preset and anchored into concrete. Fill annular space around bollard solidly with nonshrink, nonmetallic grout; mixed and placed to comply with grout manufacturer's written instructions. Slope grout up approximately 1/8 inch (3 mm) toward bollard. - B. Anchor bollards in place with concrete footings. Center and align bollards in holes 3 inches (75 mm) above bottom of excavation. Place concrete and vibrate or tamp for consolidation. Support and brace bollards in position until concrete has cured. - C. Anchor internal sleeves for removable bollards in concrete by inserting into pipe sleeves preset into concrete. Fill annular space around internal sleeves solidly with nonshrink, nonmetallic grout; mixed and placed to comply with grout manufacturer's written instructions. Slope grout up approximately 1/8 inch (3 mm) toward internal sleeve. - D. Anchor internal sleeves for removable bollards in place with concrete footings. Center and align sleeves in holes 3 inches (75 mm) above bottom of excavation. Place concrete and vibrate or tamp for consolidation. Support and brace sleeves in position until concrete has cured. - E. Place removable bollards over internal sleeves and secure with 3/4-inch (19-mm) machine bolts and nuts. After tightening nuts, drill holes in bolts for inserting padlocks. Owner will furnish padlocks. - F. Fill bollards solidly with concrete, mounding top surface to shed water. - 1. Do not fill removable bollards with concrete. ### 3.5 ADJUSTING AND CLEANING - A. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas. Paint uncoated and abraded areas with the same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces. - 1. Apply by brush or spray to provide a minimum 2.0-mil (0.05-mm) dry film thickness. - B. Touchup Painting: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint are specified in Division 09 painting Sections. - C. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing to comply with ASTM A 780. END OF SECTION 055000 BLANK PAGE ### SECTION 061053 - MISCELLANEOUS ROUGH CARPENTRY ### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following: - 1. Wood blocking and nailers. - 2. Wood sleepers. - 3. Plywood panels. - B. Related Sections include the following: - 1. Division 06 Section "Finish Carpentry" for nonstructural carpentry items exposed to view and not specified in another Section. #### 1.3 DEFINITIONS - A. Dimension Lumber: Lumber of 2 inches nominal (38 mm actual) or greater but less than 5 inches nominal (114 mm actual) in least dimension. - B. Lumber grading agencies, and the abbreviations used to reference them, include the following: - 1. WCLIB: West Coast Lumber Inspection Bureau. - 2. WWPA: Western Wood Products Association. #### 1.4 SUBMITTALS - A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details. - 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Indicate type of preservative used and net amount of preservative retained. - 2. Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Include physical properties of treated materials based on testing by a qualified independent testing agency. - 3. For products receiving a waterborne treatment, include statement that moisture content of treated materials was reduced to levels specified before shipment to Project site. - 4. Include copies of warranties from chemical treatment manufacturers for each type of treatment. - B. Research/Evaluation Reports: For the
following, showing compliance with building code in effect for Project: - 1. Preservative-treated wood. - 2. Fire-retardant-treated wood. - 3. Powder-actuated fasteners. - 4. Expansion anchors. ## 1.5 DELIVERY, STORAGE, AND HANDLING - A. Stack lumber flat with spacers between each bundle to provide air circulation. Provide for air circulation around stacks and under coverings. - B. Deliver interior wood materials that are to be exposed to view only after building is enclosed and weatherproof, wet work other than painting is dry, and HVAC system is operating and maintaining temperature and humidity at occupancy levels. #### PART 2 - PRODUCTS #### 2.1 WOOD PRODUCTS, GENERAL - A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, provide lumber that complies with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Provide lumber graded by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated. - 1. Factory mark each piece of lumber with grade stamp of grading agency. - Where nominal sizes are indicated, provide actual sizes required by DOC PS 20 for moisture content specified. Where actual sizes are indicated, they are minimum dressed sizes for dry lumber. - 3. Provide dressed lumber, S4S, unless otherwise indicated. - B. Provide wood-preservative-treated materials at roof and parapet installations and at all locations where wood is in contact with concrete. - C. Provide Fire-Retardant-Treated materials throughout interior of building, except where exposed to view in completed construction. #### 2.2 WOOD-PRESERVATIVE-TREATED MATERIALS - A. Preservative Treatment by Pressure Process: AWPA C2, except that lumber that is not in contact with the ground and is continuously protected from liquid water may be treated according to AWPA C31 with inorganic boron (SBX). - Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium. - 2. For exposed items indicated to receive a stained or natural finish, use chemical formulations that do not require incising, contain colorants, bleed through, or otherwise adversely affect finishes. - B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Do not use material that is warped or does not comply with requirements for untreated material. - C. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review. - D. Application: Treat all miscellaneous carpentry, unless otherwise indicated. #### 2.3 FIRE-RETARDANT-TREATED MATERIALS A. General: Comply with performance requirements in AWPA C27 (plywood). - 1. Use treatment that does not promote corrosion of metal fasteners. - 2. Use Type CDX, unless otherwise indicated. - B. Identify fire-retardant-treated wood with appropriate classification marking of testing and inspecting agency acceptable to authorities having jurisdiction. - C. For exposed items indicated to receive a stained or natural finish, use chemical formulations that do not bleed through, contain colorants, or otherwise adversely affect finishes. - D. Application: Treat items indicated on Drawings, and the following: - Plywood backing panels. - 2. Plywood liner panels/protective sheathing. #### 2.4 MISCELLANEOUS LUMBER - A. General: Provide miscellaneous lumber indicated and lumber for support or attachment of other construction, including the following: - 1. Blocking. - 2. Nailers. - 3. Rooftop equipment bases and support curbs. - Cants. - 5. Utility shelving. - B. For items of dimension lumber size, provide Standard, Stud, or No. 3 grade lumber with 19 percent maximum moisture content of any species. - C. For blocking not used for attachment of other construction Utility, Stud, or No. 3 grade lumber of any species may be used provided that it is cut and selected to eliminate defects that will interfere with its attachment and purpose. - D. For blocking and nailers used for attachment of other construction, select and cut lumber to eliminate knots and other defects that will interfere with attachment of other work. ### 2.5 PLYWOOD BACKING PANELS - A. Telephone and Electrical Equipment Backing Panels: DOC PS 1, Exposure 1, C-D Plugged, fire-retardant treated, in thickness indicated or, if not indicated, not less than 1/2-inch (13-mm) nominal thickness. - B. Liner Panels / Protective Sheathing: DOC PS 1, Exposure 1, C-D Plugged, fire-retardant treated, in thickness indicated or, if not indicated, not less than 1/2-inch (13-mm) nominal thickness. #### 2.6 FASTENERS - A. General: Provide fasteners of size and type indicated that comply with requirements specified in this Article for material and manufacture. - 1. Provide fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M. - B. Nails, Brads, and Staples: ASTM F 1667. - C. Power-Driven Fasteners: NES NER-272. - D. Wood Screws: ASME B18.6.1. - E. Screws for Fastening to Cold-Formed Metal Framing: ASTM C 954, except with wafer heads and reamer wings, length as recommended by screw manufacturer for material being fastened. - F. Bolts: Steel bolts complying with ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6); with ASTM A 563 (ASTM A 563M) hex nuts and, where indicated, flat washers. - G. Expansion Anchors: Anchor bolt and sleeve assembly of material indicated below with capability to sustain, without failure, a load equal to 6 times the load imposed when installed in unit masonry assemblies and equal to 4 times the load imposed when installed in concrete as determined by testing per ASTM E 488 conducted by a qualified independent testing and inspecting agency. - 1. Material: Carbon-steel components, zinc plated ## PART 3 - EXECUTION ## 3.1 INSTALLATION, GENERAL - A. Set carpentry to required levels and lines, with members plumb, true to line, cut, and fitted. Fit carpentry to other construction; scribe and cope as needed for accurate fit. Locatenailers, blocking, and similar supports to comply with requirements for attaching other construction. - B. Framing Standard: Comply with AF&PA's "Details for Conventional Wood Frame Construction," unless otherwise indicated. - C. Do not splice structural members between supports, unless otherwise indicated. - D. Provide blocking and framing as indicated and as required to support facing materials, fixtures, specialty items, and trim. - 1. Provide metal clips for fastening gypsum board or lath at corners and intersections where framing or blocking does not provide a surface for fastening edges of panels. Space clips not more than 16 inches (406 mm) o.c. - E. Provide fire blocking in furred spaces, stud spaces, and other concealed cavities as indicated and as follows: - 1. Fire block concealed spaces of wood-framed walls and partitions at each floor level, at ceiling line of top story, and at not more than 96 inches (2438 mm) o.c. Where fire blocking is not inherent in framing system used, provide closely fitted solid wood blocks of same width as framing members and 2-inch nominal- (38-mm actual-) thickness. - 2. Fire block concealed spaces between floor sleepers with same material as sleepers to limit concealed spaces to not more than 100 sq. ft. (9.3 sq. m) and to solidly fill space below partitions. - 3. Fire block concealed spaces behind combustible cornices and exterior trim at not more than 20 feet (6 m) o.c. - F. Sort and select lumber so that natural characteristics will not interfere with installation or with fastening other materials to lumber. Do not use materials with defects that interfere with function of member or pieces that are too small to use with minimum number of joints or optimum joint arrangement. - G. Comply with AWPA M4 for applying field treatment to cut surfaces of preservative-treated lumber. - H. Securely attach carpentry work to substrate by anchoring and fastening as indicated, complying with the following: - 1. NES NER-272 for power-driven fasteners. - 2. Table 2304.9.1, "Fastening Schedule," in ICC's International Building Code. I. Use common wire nails, unless otherwise indicated. Select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting wood; do not countersink nail heads, unless otherwise indicated. ## 3.2 WOOD BLOCKING, AND NAILER INSTALLATION - A. Install where indicated and where required for screeding or attaching other work. Form to shapes indicated and cut as required for true line and level of attached work. Coordinate locations with other work involved. - B. Attach items to substrates to support applied loading. Recess bolts and nuts flush with surfaces, unless otherwise indicated. ### 3.3 PROTECTION - A. Protect wood that has been treated with inorganic boron (SBX) from weather. - B. Protect rough carpentry from weather. If, despite protection, rough carpentry becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label. END OF SECTION 061053 BLANK PAGE ### SECTION 072100 - THERMAL INSULATION ### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following: - 1. Perimeter insulation under slabs-on-grade. - 2. Perimeter wall insulation (supporting backfill). - 3. Concealed building insulation. - 4. Exposed building insulation. - 5. Vapor retarders. #### 1.3 DEFINITIONS A. Mineral-Fiber Insulation: Insulation composed of rock-wool fibers, slag-wool fibers, or glass fibers; produced in boards and blanket with latter formed into batts (flat-cut lengths) or rolls. ### 1.4 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Product Test Reports: Based on
evaluation of comprehensive tests performed by a qualified testing agency for insulation products. #### 1.5 QUALITY ASSURANCE - A. Source Limitations: Obtain each type of building insulation through one source from a single manufacturer. - B. Fire-Test-Response Characteristics: Provide insulation and related materials with the fire-test-response characteristics indicated, as determined by testing identical products per test method indicated below by UL or another testing and inspecting agency acceptable to authorities having jurisdiction. Identify materials with appropriate markings of applicable testing and inspecting agency. Insulating materials, where exposed as installed in buildings of any type of construction, shall have a flame spread index of not more than 25 and a smoke-developed index of not more than 450. - 1. Surface-Burning Characteristics: ASTM E 84. - 2. Fire-Resistance Ratings: ASTM E 119. - 3. Combustion Characteristics: ASTM E 136. ### 1.6 DELIVERY, STORAGE, AND HANDLING - A. Protect insulation materials from physical damage and from deterioration by moisture, soiling, and other sources. Store inside and in a dry location. Comply with manufacturer's written instructions for handling, storing, and protecting during installation. - B. Protect plastic insulation as follows: - 1. Do not expose to sunlight, except to extent necessary for period of installation and concealment. - 2. Protect against ignition at all times. Do not deliver plastic insulating materials to Project site before installation time. - 3. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction. #### PART 2 - PRODUCTS ### 2.1 MANUFACTURERS - A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection: - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified. ### 2.2 FOAM-PLASTIC BOARD INSULATION - A. Extruded-Polystyrene Board Insulation: ASTM C 578, of type and density indicated below, with maximum flame-spread and smoke-developed indexes of 75 and 450, respectively: - 1. Manufacturers: - a. DiversiFoam Products. - b. Dow Chemical Company. - c. Owens Corning. - d. Pactiv Building Products Division. - 2. Type IV, 1.60 lb/cu. ft. (26 kg/cu. m), unless otherwise indicated. - 3. Type X, 1.30 lb/cu. ft. (21 kg/cu. m). - 4. Type VI, 1.80 lb/cu. ft. (29 kg/cu. m). - 5. Type VII, 2.20 lb/cu. ft. (35 kg/cu. m). - 6. Type V, 3.00 lb/cu. ft. (48 kg/cu. m). ### 2.3 GLASS-FIBER BLANKET INSULATION - A. Manufacturers: - CertainTeed Corporation. - 2. Guardian Fiberglass, Inc. - 3. Johns Manville. - 4. Knauf Fiber Glass. - 5. Owens Corning. - B. Unfaced, Glass-Fiber Blanket Insulation: ASTM C 665, Type I (blankets without membrane facing); consisting of fibers; with maximum flame-spread and smoke-developed indexes of 25 and 50, respectively; passing ASTM E 136 for combustion characteristics. - C. Faced, Glass-Fiber Blanket Insulation: ASTM C 665, Type II, Class A (membrane-faced surface with a flame-spread index of 25 or less); Category 1 (membrane is a vapor barrier), faced withreinforced polyethelene vapor retarder meeteing requirements of ASTM C 1136, with permeance not greater than 0.02 perm (1.15 ng/Pa x s x sg. m) when tested according to ASTM E 96, Desiccant Method. - D. Where glass-fiber blanket insulation is indicated by the following thicknesses, provide blankets in batt or roll form with thermal resistances indicated: - 3-1/2 inches (89 mm) thick with a thermal resistance of 13 deg F x h x sq. ft./Btu at 75 deg F (2.3 K x sq. m/W at 24 deg C). - 2. 5-1/2 inches (140 mm) thick with a thermal resistance of 19 deg F x h x sq. ft./Btu at 75 deg F (3.3 K x sq. m/W at 24 deg C). - 3. 6-1/2 inches (165 mm) thick with a thermal resistance of 21 deg F x h x sq. ft./Btu at 75 deg F (3.7 K x sq. m/W at 24 deg C). - 4. 10 inches (254 mm) thick with a thermal resistance of 30 deg F x h x sq. ft./Btu at 75 deg F (5.2 K x sq. m/W at 24 deg C). ### 2.4 VAPOR RETARDERS - A. Fire-Retardant, Reinforced-Polyethylene Vapor Retarders: 2 outer layers of polyethylene film laminated to an inner reinforcing layer consisting of either nonwoven grid of nylon cord or polyester scrim and weighing not less than 22 lb/1000 sq. ft. (10 kg/100 sq. m), with maximum permeance rating of 0.1317 perm (7.56 ng/Pa x s x sq. m) and with flame-spread and smoke-developed indexes of not more than 5 and 60, respectively. - 1. Products: - a. Raven Industries Inc.: DURA-SKRIM 2FR. - b. Reef Industries, Inc.; Griffolyn T-55 FR. - B. Vapor-Retarder Tape: Pressure-sensitive tape of type recommended by vapor-retarder manufacturer for sealing joints and penetrations in vapor retarder. - C. Vapor-Retarder Fasteners: Pancake-head, self-tapping steel drill screws; with fender washers. - D. Single-Component Nonsag Urethane Sealant: ASTM C 920, Type I, Grade NS, Class 25, Use NT related to exposure, and Use O related to vapor-barrier-related substrates. - E. Adhesive for Vapor Retarders: Product recommended by vapor-retarder manufacturer and with demonstrated capability to bond vapor retarders securely to substrates indicated. ## 2.5 AUXILIARY INSULATING MATERIALS - A. Vapor-Retarder Tape: Pressure-sensitive tape of type recommended by insulation manufacturers for sealing joints and penetrations in vapor-retarder facings. - B. Adhesive for Bonding Insulation: Product with demonstrated capability to bond insulation securely to substrates indicated without damaging insulation and substrates. ## PART 3 - EXECUTION #### 3.1 EXAMINATION A. Examine substrates and conditions, with Installer present, for compliance with requirements of Sections in which substrates and related work are specified and for other conditions affecting performance. 1. Proceed with installation only after unsatisfactory conditions have been corrected. #### 3.2 PREPARATION A. Clean substrates of substances harmful to insulation or vapor retarders, including removing projections capable of puncturing vapor retarders or of interfering with insulation attachment. ### 3.3 INSTALLATION, GENERAL - A. Comply with insulation manufacturer's written instructions applicable to products and application indicated. - B. Install insulation that is undamaged, dry, and unsoiled and that has not been left exposed at any time to ice, rain, and snow. - C. Extend insulation in thickness indicated to envelop entire area to be insulated. Cut and fit tightly around obstructions and fill voids with insulation. Remove projections that interfere with placement. - D. Water-Piping Coordination: If water piping is located within insulated exterior walls, coordinate location of piping to ensure that it is placed on warm side of insulation and insulation encapsulates piping. - E. For preformed insulating units, provide sizes to fit applications indicated and selected from manufacturer's standard thicknesses, widths, and lengths. Apply single layer of insulation units to produce thickness indicated unless multiple layers are otherwise shown or required to make up total thickness. ### 3.4 INSTALLATION OF PERIMETER AND UNDER-SLAB INSULATION - A. On vertical surfaces, set insulation units in adhesive applied according to manufacturer's written instructions. Use adhesive recommended by insulation manufacturer. - If not otherwise indicated, extend insulation a minimum of 24 inches (610 mm) below exterior grade line. - B. On horizontal surfaces, loosely lay insulation units according to manufacturer's written instructions. Stagger end joints and tightly abut insulation units. - C. Protect below-grade insulation on vertical surfaces from damage during backfilling by applying protection course with joints butted. Set in adhesive according to insulation manufacturer's written instructions. - D. Protect top surface of horizontal insulation from damage during concrete work by applying protection course with joints butted. ### 3.5 INSTALLATION OF GENERAL BUILDING INSULATION - A. Apply insulation units to substrates by method indicated, complying with manufacturer's written instructions. If no specific method is indicated, bond units to substrate with adhesive or use mechanical anchorage to provide permanent placement and support of units. - B. Seal joints between foam-plastic insulation units by applying adhesive, mastic, or sealant to edges of each unit to form a tight seal as units are shoved into place. Fill voids in completed installation with adhesive, mastic, or sealant as recommended by insulation manufacturer. - C. Set vapor-retarder-faced units with vapor retarder to warm-in-winter side of construction, unless otherwise indicated. - 1. Tape joints and ruptures in vapor retarder, and seal each continuous area of insulation to surrounding construction to ensure airtight installation. - D. Install mineral-fiber insulation in cavities formed by framing members according to the following requirements: - 1. Use insulation widths and lengths that fill the cavities formed by framing members. If more than one length is required to fill cavity, provide lengths that will produce a snug fit between ends. - 2. Place insulation in cavities formed by framing members to produce a friction fit between edges of insulation and adjoining framing members. - 3. Maintain 3-inch (76-mm) clearance of insulation around recessed lighting fixtures. - 4. Install eave ventilation troughs between roof framing members in insulated attic spaces at vented eaves - For metal-framed wall cavities where cavity heights exceed 96 inches (2438 mm), support unfaced blankets mechanically and support faced blankets by taping flanges of insulation to flanges of metal studs. - E. Stuff glass-fiber loose-fill insulation into miscellaneous voids and cavity spaces where shown. Compact to approximately 40 percent of normal maximum volume equaling a density of approximately 2.5 lb/cu. ft. (40 kg/cu. m). ### 3.6 INSTALLATION OF VAPOR
RETARDERS - A. General: Extend vapor retarder to extremities of areas to be protected from vapor transmission. Secure in place with adhesives or other anchorage system as indicated. Extend vapor retarder to cover miscellaneous voids in insulated substrates, including those filled with loose-fiber insulation. - B. Seal vertical joints in vapor retarders over framing by lapping not less than two wall studs. Fasten vapor retarders to wood framing at top, end, and bottom edges; at perimeter of wall openings; and at lap joints. Space fasteners 16 inches (400 mm) o.c. - C. Before installing vapor retarder, apply urethane sealant to flanges of metal framing including runner tracks, metal studs, and framing around door and window openings. Seal overlapping joints in vapor retarders with vapor-retarder tape according to vapor-retarder manufacturer's written instructions. Seal butt joints with vapor-retarder tape. Locate all joints over framing members or other solid substrates. - D. Firmly attach vapor retarders to metal framing and solid substrates with vapor-retarder fasteners as recommended by vapor-retarder manufacturer. - E. Seal joints caused by pipes, conduits, electrical boxes, and similar items penetrating vapor retarders with vapor-retarder tape to create an airtight seal between penetrating objects and vapor retarder. - F. Repair tears or punctures in vapor retarders immediately before concealment by other work. Cover with vapor-retarder tape or another layer of vapor retarder. ### 3.7 PROTECTION A. Protect installed insulation and vapor retarders from damage due to harmful weather exposures, physical abuse, and other causes. Provide temporary coverings or enclosures where insulation is subject to abuse and cannot be concealed and protected by permanent construction immediately after installation. END OF SECTION 072100 BLANK PAGE ### SECTION 079200 - JOINT SEALANTS #### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes joint sealants for the following applications, including those specified by reference to this Section: - 1. Exterior joints in the following vertical surfaces and horizontal nontraffic surfaces: - a. Construction joints in cast-in-place concrete. - b. Joints between metal panels. - c. Joints between different materials listed above. - d. Perimeter joints between materials listed above and frames of doors and louvers. - e. Other joints as indicated. - 2. Exterior joints in the following horizontal traffic surfaces: - a. Isolation and contraction joints in cast-in-place concrete slabs. - b. Other joints as indicated. - 3. Interior joints in the following vertical surfaces and horizontal nontraffic surfaces: - a. Control and expansion joints on exposed interior surfaces of exterior walls. - b. Perimeter joints of exterior openings where indicated. - c. Tile control and expansion joints. - Perimeter joints between interior wall surfaces and frames of interior doors, windows and elevator entrances. - e. Joints between plumbing fixtures and adjoining walls, floors, and counters. - f. Other joints as indicated. - 4. Interior joints in the following horizontal traffic surfaces: - a. Isolation joints in cast-in-place concrete slabs. - b. Control and expansion joints in tile flooring. - c. Other joints as indicated. ## 1.3 PERFORMANCE REQUIREMENTS - A. Provide elastomeric joint sealants that establish and maintain watertight and airtight continuous joint seals without staining or deteriorating joint substrates. - B. Provide joint sealants for interior applications that establish and maintain airtight and water-resistant continuous joint seals without staining or deteriorating joint substrates. ### 1.4 SUBMITTALS - A. Product Data: For each joint-sealant product indicated. - B. Samples for Initial Selection: Manufacturer's color charts consisting of strips of cured sealants showing the full range of colors available for each product exposed to view. - C. Samples for Verification: For each type and color of joint sealant required, provide Samples with joint sealants in 1/2-inch- (13-mm-) wide joints formed between two 6-inch- (150-mm-) long strips of material matching the appearance of exposed surfaces adjacent to joint sealants. - D. Product Certificates: For each type of joint sealant and accessory, signed by product manufacturer. - E. Qualification Data: For Installer and testing agency. - F. Compatibility and Adhesion Test Reports: From sealant manufacturer, indicating the following: - Materials forming joint substrates and joint-sealant backings have been tested for compatibility and adhesion with joint sealants. - 2. Interpretation of test results and written recommendations for primers and substrate preparation needed for adhesion. - G. Product Test Reports: Based on comprehensive testing of product formulations performed by a qualified testing agency, indicating that sealants comply with requirements. - H. Warranties: Special warranties specified in this Section. #### 1.5 QUALITY ASSURANCE - A. Installer Qualifications: Manufacturer's authorized Installer who is approved or licensed for installation of elastomeric sealants required for this Project. - B. Source Limitations: Obtain each type of joint sealant through one source from a single manufacturer. - C. Preconstruction Compatibility and Adhesion Testing: Submit to joint-sealant manufacturers, for testing indicated below, samples of materials that will contact or affect joint sealants. - 1. Use ASTM C 1087 to determine whether priming and other specific joint preparation techniques are required to obtain rapid, optimum adhesion of joint sealants to joint substrates. - 2. Submit not fewer than eight pieces of each type of material, including joint substrates, shims, joint-sealant backings, secondary seals, and miscellaneous materials. - 3. Schedule sufficient time for testing and analyzing results to prevent delaying the Work. - 4. For materials failing tests, obtain joint-sealant manufacturer's written instructions for corrective measures including use of specially formulated primers. - 5. Testing will not be required if joint-sealant manufacturers submit joint preparation data that are based on previous testing of current sealant products for adhesion to, and compatibility with, joint substrates and other materials matching those submitted. - D. Product Testing: Obtain test results for "Product Test Reports" Paragraph in "Submittals" Article from a qualified testing agency based on testing current sealant formulations within a 36-month period preceding the commencement of the Work. - 1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C 1021 to conduct the testing indicated, as documented according to ASTM E 548. - 2. Test elastomeric joint sealants for compliance with requirements specified by reference to ASTM C 920, and where applicable, to other standard test methods. - 3. Test other joint sealants for compliance with requirements indicated by referencing standard specifications and test methods. - E. Mockups: Build mockups incorporating sealant joints, as follows, to verify selections made under sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution: - 1. Joints in mockups of assemblies specified in other Sections that are indicated to receive elastomeric joint sealants, which are specified by reference to this Section. ## 1.6 PROJECT CONDITIONS - A. Do not proceed with installation of joint sealants under the following conditions: - 1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer or are below 40 deg F (5 deg C). - 2. When joint substrates are wet. - Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated. - Contaminants capable of interfering with adhesion have not yet been removed from joint substrates. #### 1.7 WARRANTY - A. Special Installer's Warranty: Installer's standard form in which Installer agrees to repair or replace elastomeric joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period. - 1. Warranty Period: Two years from date of Substantial Completion. - B. Special Manufacturer's Warranty: Manufacturer's standard form in which elastomeric sealant manufacturer agrees to furnish elastomeric joint sealants to repair or replace those that do not comply with performance and other requirements specified in this Section within specified warranty period. - 1. Warranty Period: Ten years from date of Substantial Completion. - C. Special warranties specified in this Article exclude deterioration or failure of elastomeric joint sealants from the following: - 1. Movement of the structure resulting in stresses on the sealant exceeding sealant manufacturer's written specifications for sealant elongation and compression caused by structural settlement or errors attributable to design or construction. - 2. Disintegration of joint substrates from natural causes exceeding design specifications. - 3. Mechanical damage caused by individuals, tools, or other outside agents. #### PART 2 - PRODUCTS #### 2.1 MANUFACTURERS A. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, products listed in other Part 2 articles. # 2.2 MATERIALS, GENERAL A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by sealant manufacturer, based on testing and field experience. - B. VOC Content of Interior Sealants: Provide interior sealants and sealant
primers that comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24): - 1. Sealants: 250 g/L. - 2. Sealant Primers for Nonporous Substrates: 250 g/L. - 3. Sealant Primers for Porous Substrates: 775 g/L. - C. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer's full range. #### 2.3 ELASTOMERIC JOINT SEALANTS - A. Elastomeric Sealants: Comply with ASTM C 920 and other requirements indicated for each liquid-applied chemically curing sealant specified, including those referencing ASTM C 920 classifications for type, grade, class, and uses related to exposure and joint substrates. - B. Stain-Test-Response Characteristics: Where elastomeric sealants are specified to be nonstaining to porous substrates, provide products that have undergone testing according to ASTM C 1248 and have not stained porous joint substrates indicated for Project. - C. Suitability for Contact with Food: Where elastomeric sealants are indicated for joints that will come in repeated contact with food, provide products that comply with 21 CFR 177.2600. - D. Single-Component Mildew-Resistant Neutral-Curing Silicone Sealant ES-1: - 1. Available Products: - a. Pecora Corporation; 898. - b. Tremco; Tremsil 600 White. - 2. Type and Grade: S (single component) and NS (nonsag). - 3. Class: 25. - 4. Use Related to Exposure: NT (nontraffic). - 5. Uses Related to Joint Substrates: M, G, A, and, as applicable to joint substrates indicated, O. - a. Use O Joint Substrates: ceramic tile. - E. Multicomponent Nonsag Urethane Sealant ES-2: - 1. Available Products: - a. Pecora Corporation; Dynatrol II. - b. Tremco; Dymeric 511. - c. Tremco; Vulkem 922. - 2. Type and Grade: M (multicomponent) and NS (nonsag). - 3. Class: 50. - 4. Use[s] Related to Exposure: NT (nontraffic) and T (traffic). - 5. Uses Related to Joint Substrates: M, [G,]A, and, as applicable to joint substrates indicated, O. - a. Use O Joint Substrates: galvanized steel, brick, ceramic tile and wood. - F. Multicomponent Pourable Urethane Sealant ES-3: - 1. Available]Products: - a. Pecora Corporation; Dynatrol II-SG. - b. Sika Corporation, Inc.; Sikaflex 2c SL. - c. Sonneborn, Division of ChemRex Inc.; SL 2. - 2. Type and Grade: M (multicomponent) and P (pourable). - Class: 25. - 4. Uses Related to Exposure: T (traffic) and NT (nontraffic). - Uses Related to Joint Substrates: M, G, A, and, as applicable to joint substrates indicated, O. - a. Use O Joint Substrates: ceramic tile. #### 2.4 LATEX JOINT SEALANTS - A. Latex Sealant LS-1: Comply with ASTM C 834, Type P, Grade NF. - B. Available Products: - 1. Bostik Findley; Chem-Calk 600. - 2. Pecora Corporation; AC-20+. - 3. Schnee-Morehead, Inc.; SM 8200. - 4. Sonneborn, Division of ChemRex Inc.; Sonolac. - 5. Tremco; Tremflex 834. #### 2.5 JOINT-SEALANT BACKING - A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing. - B. Cylindrical Sealant Backings: ASTM C 1330, Type C (closed-cell material with a surface skin), O (open-cell material), B (bicellular material with a surface skin), or any of the preceding types, as approved in writing by joint-sealant manufacturer for joint application indicated, and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance: - C. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint where such adhesion would result in sealant failure. Provide self-adhesive tape where applicable. # 2.6 MISCELLANEOUS MATERIALS - A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests. - B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates. - C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints. #### PART 3 - EXECUTION #### 3.1 EXAMINATION A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance. B. Proceed with installation only after unsatisfactory conditions have been corrected. #### 3.2 PREPARATION - A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements: - Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost. - Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining after cleaning operations above by vacuuming or blowing out joints with oil-free compressed air. Porous joint substrates include the following: - a. Concrete. - b. Masonry. - c. Unglazed surfaces of ceramic tile. - 3. Remove laitance and form-release agents from concrete. - 4. Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous joint substrates include the following: - a. Metal. - b. Glass. - c. Porcelain enamel. - d. Glazed surfaces of ceramic tile. - B. Joint Priming: Prime joint substrates, where recommended in writing by joint-sealant manufacturer, based on preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces. - C. Masking Tape: Use masking tape where required to prevent contact of sealant with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal. #### 3.3 INSTALLATION OF JOINT SEALANTS - A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply. - B. Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions indicated. - C. Acoustical Sealant Application Standard: Comply with recommendations in ASTM C 919 for use of joint sealants in acoustical applications as applicable to materials, applications, and conditions indicated. - D. Install sealant backings of type indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability. - 1. Do not leave gaps between ends of sealant backings. - 2. Do not stretch, twist, puncture, or tear sealant backings. - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials. - E. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints. - F. Install sealants using proven techniques that comply with the following and at the same time backings are installed: - 1. Place sealants so they directly contact and fully wet joint substrates. - 2. Completely fill recesses in each joint configuration. - 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability. - G. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified below to form smooth, uniform beads of configuration indicated: to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint. - 1. Remove excess sealant from surfaces adjacent to joints. - 2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces. - 3. Provide concave joint configuration per Figure 5A in ASTM C 1193, unless otherwise indicated. - 4. Provide flush joint configuration where indicated per Figure 5B in ASTM C 1193. - Provide recessed joint configuration of recess depth and at locations indicated per Figure 5C in ASTM C 1193. - a. Use masking tape to protect surfaces adjacent to recessed tooled joints. #### 3.4 CLEANING A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur. ### 3.5 PROTECTION A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such
protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work. END OF SECTION 079200 BLANK PAGE # SECTION 081113 - HOLLOW METAL DOORS AND FRAMES ### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. Section Includes: - Standard hollow metal doors and frames. - B. Related Sections: - 1. Division 08 Section "Door Hardware" for door hardware for hollow metal doors. - Division 09 Sections "Exterior Painting" and "Interior Painting" for field painting hollow metal doors and frames. ### 1.3 DEFINITIONS - A. Minimum Thickness: Minimum thickness of base metal without coatings. - B. Standard Hollow Metal Work: Hollow metal work fabricated according to ANSI/SDI A250.8. # 1.4 SUBMITTALS - A. Product Data: For each type of product indicated. Include construction details, material descriptions, core descriptions, fire-resistance rating, temperature-rise ratings, and finishes. - B. Shop Drawings: Include the following: - 1. Elevations of each door design. - 2. Details of doors, including vertical and horizontal edge details and metal thicknesses. - 3. Frame details for each frame type, including dimensioned profiles and metal thicknesses. - 4. Locations of reinforcement and preparations for hardware. - 5. Details of each different wall opening condition. - 6. Details of anchorages, joints, field splices, and connections. - 7. Details of accessories. - 8. Details of moldings and removable stops. ### C. Other Action Submittals: - Schedule: Provide a schedule of hollow metal work prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings. Coordinate with door hardware schedule. - D. Oversize Construction Certification: For assemblies required to be fire rated and exceeding limitations of labeled assemblies. E. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for each type of hollow metal door and frame assembly. #### 1.5 QUALITY ASSURANCE - A. Source Limitations: Obtain hollow metal work from single source from single manufacturer. - B. Fire-Rated Door Assemblies: Assemblies complying with NFPA 80 that are listed and labeled by a qualified testing agency, for fire-protection ratings indicated, based on testing at positive pressure. - 1. Oversize Fire-Rated Door Assemblies: For units exceeding sizes of tested assemblies, provide certification by a qualified testing agency that doors comply with standard construction requirements for tested and labeled fire-rated door assemblies except for size. - 2. Temperature-Rise Limit: At vertical exit enclosures and exit passageways, provide doors that have a maximum transmitted temperature end point of not more than 450 deg F (250 deg C) above ambient after 30 minutes of standard fire-test exposure. - C. Smoke-Control Door Assemblies: Comply with NFPA 105 or UL 1784. # 1.6 DELIVERY, STORAGE, AND HANDLING - A. Deliver hollow metal work palletized, wrapped, or crated to provide protection during transit and Project-site storage. Do not use nonvented plastic. - B. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions. - C. Store hollow metal work under cover at Project site. Place in stacks of five units maximum in a vertical position with heads up, spaced by blocking, on minimum 4-inch- (102-mm-) high wood blocking. Do not store in a manner that traps excess humidity. - 1. Provide minimum 1/4-inch (6-mm) space between each stacked door to permit air circulation. # 1.7 PROJECT CONDITIONS A. Field Measurements: Verify actual dimensions of openings by field measurements before fabrication. #### 1.8 COORDINATION A. Coordinate installation of anchorages for hollow metal frames. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors. Deliver such items to Project site in time for installation. #### PART 2 - PRODUCTS #### 2.1 MANUFACTURERS - A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - 1. Ceco Door Products; an Assa Abloy Group company. - 2. Fleming Door Products Ltd.; an Assa Abloy Group company. - 3. Kewanee Corporation (The). - 4. Steelcraft; an Ingersoll-Rand company. - Curries : an Assa Abloy company #### 2.2 MATERIALS - A. Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B; suitable for exposed applications. - B. Hot-Rolled Steel Sheet: ASTM A 1011/A 1011M, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled. - C. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Commercial Steel (CS), Type B; with minimum G60 (Z180) or A60 (ZF180) metallic coating. - D. Frame Anchors: ASTM A 591/A 591M, Commercial Steel (CS), 40Z (12G) coating designation; mill phosphatized. - For anchors built into exterior walls, steel sheet complying with ASTM A 1008/A 1008M or ASTM A 1011/A 1011M, hot-dip galvanized according to ASTM A 153/A 153M, Class B. - E. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A 153/A 153M. - F. Powder-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching hollow metal frames of type indicated. - G. Mineral-Fiber Insulation: ASTM C 665, Type I (blankets without membrane facing); consisting of fibers manufactured from slag or rock wool with 6- to 12-lb/cu. ft. (96- to 192-kg/cu. m) density; with maximum flame-spread and smoke-development indexes of 25 and 50, respectively; passing ASTM E 136 for combustion characteristics. - H. Bituminous Coating: Cold-applied asphalt mastic, SSPC-Paint 12, compounded for 15-mil (0.4-mm) dry film thickness per coat. Provide inert-type noncorrosive compound free of asbestos fibers, sulfur components, and other deleterious impurities. # 2.3 STANDARD HOLLOW METAL DOORS - A. General: Provide doors of design indicated, not less than thickness indicated; fabricated with smooth surfaces, without visible joints or seams on exposed faces unless otherwise indicated. Comply with ANSI/SDI A250.8. - 1. Design: Flush panel. - 2. Core Construction: Manufacturer's standard kraft-paper honeycomb, polystyrene, polyurethane, polyisocyanurate, mineral-board, or vertical steel-stiffener core. - a. Fire Door Core: As required to provide fire-protection and temperature-rise ratings indicated. - b. Thermal-Rated (Insulated) Doors: Where indicated, provide doors fabricated with thermal-resistance value (R-value) of not less than 6.0 deg F x h x sq. ft./Btu (1.057 K x sq. m/W) when tested according to ASTM C 1363. - Locations: Interior doors between tempered and non-tempered spaces, and all exterior doors. - 3. Vertical Edges for Single-Acting Doors: Manufacturer's standard. - 4. Top and Bottom Edges: Closed with flush or inverted 0.042-inch- (1.0-mm-) thick, end closures or channels of same material as face sheets. - 5. Tolerances: Comply with SDI 117, "Manufacturing Tolerances for Standard Steel Doors and Frames." - B. Exterior Doors: Face sheets fabricated from metallic-coated steel sheet. Provide doors complying with requirements indicated below by referencing ANSI/SDI A250.8 for level and model and ANSI/SDI A250.4 for physical performance level: - 1. Level 2 and Physical Performance Level B (Heavy Duty), Model 1 (Full Flush). - C. Interior Doors: Face sheets fabricated from cold-rolled steel sheet unless metallic-coated sheet is indicated. Provide doors complying with requirements indicated below by referencing ANSI/SDI A250.8 for level and model and ANSI/SDI A250.4 for physical performance level: - 1. Level 2 and Physical Performance Level B (Heavy Duty), Model 1 (Full Flush). - D. Hardware Reinforcement: Fabricate according to ANSI/SDI A250.6 with reinforcing plates from same material as door face sheets. - E. Fabricate concealed stiffeners and hardware reinforcement from either cold- or hot-rolled steel sheet. #### 2.4 STANDARD HOLLOW METAL FRAMES - A. General: Comply with ANSI/SDI A250.8 and with details indicated for type and profile. - B. Exterior Frames: Fabricated from metallic-coated steel sheet. - 1. Fabricate frames with mitered or coped corners. - 2. Fabricate frames as full profile welded unless otherwise indicated. - 3. Frames for Level 2 Steel Doors: 0.053-inch- (1.3-mm-) thick steel sheet. - C. Interior Frames: Fabricated from cold-rolled steel sheet unless metallic-coated sheet is indicated. - 1. Fabricate frames with mitered or coped corners. - 2. Fabricate frames as full profile welded unless otherwise indicated. - 3. Frames for Level 2 Steel Doors: 0.053-inch- (1.3-mm-) thick steel sheet. - 4. Frames for Borrowed Lights: 0.053-inch- (1.3-mm-) thick steel sheet. - D. Hardware Reinforcement: Fabricate according to ANSI/SDI A250.6 with reinforcement plates from same material as frames. # 2.5 FRAME ANCHORS - A. Jamb Anchors: - Stud-Wall Type: Designed to engage stud, welded to back of frames; not less than 0.042 inch (1.0 mm) thick. - B. Floor Anchors: Formed from same material as frames, not less than 0.042 inch (1.0 mm) thick, and as follows: - 1. Monolithic Concrete Slabs: Clip-type anchors, with two holes to receive fasteners. #### 2.6 STOPS AND MOLDINGS - A. Moldings for Glazed Lites in Doors: Minimum 0.032 inch (0.8 mm) thick, fabricated from same material as door face sheet in which they are installed. - B. Fixed Frame Moldings: Formed integral with hollow metal frames, a minimum of 5/8 inch (16 mm) high
unless otherwise indicated. - C. Loose Stops for Glazed Lites in Frames: Minimum 0.032 inch (0.8 mm) thick, fabricated from same material as frames in which they are installed. #### 2.7 FABRICATION - A. Fabricate hollow metal work to be rigid and free of defects, warp, or buckle. Accurately form metal to required sizes and profiles, with minimum radius for thickness of metal. Where practical, fit and assemble units in manufacturer's plant. To ensure proper assembly at Project site, clearly identify work that cannot be permanently factory assembled before shipment. - B. Tolerances: Fabricate hollow metal work to tolerances indicated in ANSI/NAAMM-HMMA 861. - C. Hollow Metal Doors: - 1. Exterior Doors: Provide weep-hole openings in bottom of exterior doors to permit moisture to escape. Seal joints in top edges of doors against water penetration. - 2. Glazed Lites: Factory cut openings in doors. - Astragals: Provide overlapping astragal on one leaf of pairs of doors where required by NFPA 80 for fire-performance rating or where indicated. Extend minimum 3/4 inch (19 mm) beyond edge of door on which astragal is mounted. - D. Hollow Metal Frames: Where frames are fabricated in sections due to shipping or handling limitations, provide alignment plates or angles at each joint, fabricated of same thickness metal as frames. - Welded Frames: Weld flush face joints continuously; grind, fill, dress, and make smooth, flush, and invisible. Sidelight Frames: Provide closed tubular members with no visible face seams or joints, fabricated from same material as door frame. Fasten members at crossings and to jambs by butt welding. - Floor Anchors: Weld anchors to bottom of jambs and mullions with at least four spot welds per anchor. - 3. Jamb Anchors: Provide number and spacing of anchors as follows: - a. Stud-Wall Type: Locate anchors not more than 18 inches (457 mm) from top and bottom of frame. Space anchors not more than 32 inches (813 mm) o.c. and as follows: - 1) Three anchors per jamb up to 60 inches (1524 mm) high. - 2) Four anchors per jamb from 60 to 90 inches (1524 to 2286 mm) high. - 3) Five anchors per jamb from 90 to 96 inches (2286 to 2438 mm) high. - 4) Five anchors per jamb plus 1 additional anchor per jamb for each 24 inches (610 mm) or fraction thereof above 96 inches (2438 mm) high. - Two anchors per head for frames above 42 inches (1066 mm) wide and mounted in metal-stud partitions. - b. Compression Type: Not less than two anchors in each jamb. - 4. Door Silencers: Except on weather-stripped doors, drill stops to receive door silencers as follows. Keep holes clear during construction. - a. Single-Door Frames: Drill stop in strike jamb to receive three door silencers. - b. Double-Door Frames: Drill stop in head jamb to receive two door silencers. - E. Fabricate concealed stiffeners, edge channels, and hardware reinforcement from either cold- or hot-rolled steel sheet. - F. Hardware Preparation: Factory prepare hollow metal work to receive templated mortised hardware; include cutouts, reinforcement, mortising, drilling, and tapping according to the Door Hardware Schedule and templates furnished as specified in Division 08 Section "Door Hardware." - 1. Locate hardware as indicated, or if not indicated, according to ANSI/NAAMM-HMMA 861. - Reinforce doors and frames to receive nontemplated, mortised and surface-mounted door hardware. - 3. Comply with applicable requirements in ANSI/SDI A250.6 and ANSI/DHI A115 Series specifications for preparation of hollow metal work for hardware. - Coordinate locations of conduit and wiring boxes for electrical connections with Division 26 Sections. - G. Stops and Moldings: Provide stops and moldings around glazed lites where indicated. Form corners of stops and moldings with butted or mitered hairline joints. - 1. Single Glazed Lites: Provide fixed stops and moldings welded on secure side of hollow metal work. - Provide fixed frame moldings on outside of exterior and on secure side of interior doors and frames. - 3. Provide loose stops and moldings on inside of hollow metal work. - Coordinate rabbet width between fixed and removable stops with type of glazing and type of installation indicated. #### 2.8 STEEL FINISHES - A. Prime Finish: Apply manufacturer's standard primer immediately after cleaning and pretreating. - 1. Shop Primer: Manufacturer's standard, fast-curing, lead- and chromate-free primer complying with ANSI/SDI A250.10 acceptance criteria; recommended by primer manufacturer for substrate; compatible with substrate and field-applied coatings despite prolonged exposure. - B. Final Painting: Shop and/or field paint all doors and steel hollow metal frames in finish colors to match colors selected by Architect. Coordinate with Division 09 painting sections. # PART 3 - EXECUTION # 3.1 EXAMINATION - A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work. - B. Examine roughing-in for embedded and built-in anchors to verify actual locations before frame installation. - C. Proceed with installation only after unsatisfactory conditions have been corrected. ### 3.2 PREPARATION - A. Remove welded-in shipping spreaders installed at factory. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces. - B. Prior to installation, adjust and securely brace welded hollow metal frames for squareness, alignment, twist, and plumbness to the following tolerances: - 1. Squareness: Plus or minus 1/16 inch (1.6 mm), measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head. - 2. Alignment: Plus or minus 1/16 inch (1.6 mm), measured at jambs on a horizontal line parallel to plane of wall. - 3. Twist: Plus or minus 1/16 inch (1.6 mm), measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall. - 4. Plumbness: Plus or minus 1/16 inch (1.6 mm), measured at jambs on a perpendicular line from head to floor. - C. Drill and tap doors and frames to receive nontemplated, mortised, and surface-mounted door hardware. #### 3.3 INSTALLATION - A. General: Install hollow metal work plumb, rigid, properly aligned, and securely fastened in place; comply with Drawings and manufacturer's written instructions. - B. Hollow Metal Frames: Install hollow metal frames of size and profile indicated. Comply with ANSI/SDI A250.11. - 1. Set frames accurately in position, plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces, leaving surfaces smooth and undamaged. - a. At fire-protection-rated openings, install frames according to NFPA 80. - b. Where frames are fabricated in sections because of shipping or handling limitations, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces. - c. Install frames with removable glazing stops located on secure side of opening. - d. Install door silencers in frames before grouting. - e. Remove temporary braces necessary for installation only after frames have been properly set and secured. - f. Check plumbness, squareness, and twist of frames as walls are constructed. Shim as necessary to comply with installation tolerances. - g. Field apply bituminous coating to backs of frames that are filled with grout containing antifreezing agents. - 2. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor, and secure with postinstalled expansion anchors. - 3. Metal-Stud Partitions: Solidly pack mineral-fiber insulation behind frames. - Installation Tolerances: Adjust hollow metal door frames for squareness, alignment, twist, and plumb to the following tolerances: - a. Squareness: Plus or minus 1/16 inch (1.6 mm), measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head. - b. Alignment: Plus or minus 1/16 inch (1.6 mm), measured at jambs on a horizontal line parallel to plane of wall. - c. Twist: Plus or minus 1/16 inch (1.6 mm), measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall. - d. Plumbness: Plus or minus 1/16 inch (1.6 mm), measured at jambs at floor. - C. Hollow Metal Doors: Fit hollow metal doors accurately in frames, within clearances specified below. Shim as necessary. - 1. Non-Fire-Rated Standard Steel Doors: - a. Jambs and Head: 1/8 inch (3 mm) plus or minus 1/16 inch (1.6 mm). - b. Between Edges of Pairs of Doors: 1/8 inch (3 mm) plus or minus 1/16 inch (1.6 mm). - c. Between Bottom of Door and Top of Threshold: Maximum 3/8 inch (9.5 mm). - Between Bottom of Door and Top of Finish Floor (No Threshold): Maximum 3/4 inch (19 mm). - 2. Fire-Rated Doors: Install doors with clearances according to NFPA 80. - 3. Smoke-Control Doors: Install doors according to NFPA 105. # 3.4 ADJUSTING AND CLEANING - A. Final Adjustments: Check and readjust operating hardware items immediately before final inspection. Leave work in complete and proper operating condition. Remove and replace defective work, including hollow metal work that is warped, bowed, or otherwise unacceptable. - B. Remove grout and other bonding material from hollow metal work immediately after installation. - C. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer. - 1. If doors or frames shop painted, also smooth & touch-up finished paint coats. - D. Metallic-Coated Surfaces: Clean abraded areas and repair with galvanizing repair paint according to manufacturer's written instructions. END OF SECTION 081113 # SECTION 083323 - OVERHEAD COILING DOORS #### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and
Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. Section Includes: - Insulated service doors. - B. Related Sections: - 1. Division 05 Section "Metal Fabrications" for miscellaneous steel supports. - Division 09 Section "Exterior Painting" and "Interior Painting" for finish painting of factory-primed doors. - 3. Division 26 Sections for electrical service and connections for powered operators and accessories. # 1.3 PERFORMANCE REQUIREMENTS - A. Structural Performance, Exterior Doors: Exterior overhead coiling doors shall withstand the wind loads, the effects of gravity loads, and loads and stresses within limits and under conditions indicated according to SEI/ASCE 7. - 1. Wind Loads: As indicated on Drawings. - a. Basic Wind Speed: 90 mph (40 m/s). - b. Importance Factor: 1.0. - c. Exposure Category: C. - 2. Deflection Limits: Design overhead coiling doors to withstand design wind load without evidencing permanent deformation or disengagement of door components. - B. Operability under Wind Load: Design overhead coiling doors to remain operable under design wind load, acting inward and outward. - C. Windborne-Debris-Impact-Resistance Performance: Provide overhead coiling doors that pass missile-impact and cyclic-pressure tests when tested according to ASTM E 1886 and ASTM E 1996. - 1. Large Missile Test: For overhead coiling doors located within 30 feet (9.144 m) of grade. - D. Seismic Performance: Overhead coiling doors shall withstand the effects of earthquake motions determined according to SEI/ASCE 7. - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified." - 2. Seismic Component Importance Factor: 1.0. E. Operation Cycles: Provide overhead coiling door components and operators capable of operating for not less than number of cycles indicated for each door. One operation cycle is complete when a door is opened from the closed position to the fully open position and returned to the closed position. #### 1.4 SUBMITTALS - A. Product Data: For each type and size of overhead coiling door and accessory. Include the following: - Construction details, material descriptions, dimensions of individual components, profiles for slats, and finishes. - 2. Rated capacities, operating characteristics, electrical characteristics, and furnished accessories. - B. Shop Drawings: For each installation and for special components not dimensioned or detailed in manufacturer's product data. Include plans, elevations, sections, details, and attachments to other work. - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection. - 2. Wiring Diagrams: For power, signal, and control wiring. - C. Samples for Initial Selection: Manufacturer's finish charts showing full range of colors and textures available for units with factory-applied finishes. - 1. Include similar Samples of accessories involving color selection. - Samples for Verification: For each type of exposed finish required, prepared on Samples of size indicated below. - 1. Curtain Slats: 12 inches (305 mm) long. - 2. Bottom Bar: 6 inches (150 mm) long with sensor edge. - 3. Guides: 6 inches (150 mm) long. - Brackets: 6 inches (150 mm) square. - 5. Hood: 6 inches (150 mm) square. - E. Delegated-Design Submittal: For overhead coiling doors indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation. - 1. Detail fabrication and assembly of seismic restraints. - 2. Summary of forces and loads on walls and jambs. - F. Qualification Data: For qualified Installer. - G. Seismic Qualification Certificates: For overhead coiling doors, accessories, and components, from manufacturer. - H. Maintenance Data: For overhead coiling doors to include in maintenance manuals. # 1.5 QUALITY ASSURANCE - A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for both installation and maintenance of units required for this Project. - B. Source Limitations: Obtain overhead coiling doors from single source from single manufacturer. - 1. Obtain operators and controls from overhead coiling door manufacturer. C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application. #### PART 2 - PRODUCTS #### 2.1 DOOR CURTAIN MATERIALS AND CONSTRUCTION - A. Door Curtains: Fabricate overhead coiling-door curtain of interlocking metal slats, designed to withstand wind loading indicated, in a continuous length for width of door without splices. Unless otherwise indicated, provide slats of thickness and mechanical properties recommended by door manufacturer for performance, size, and type of door indicated, and as follows: - Aluminum Door Curtain Slats: ASTM B 209 (ASTM B 209M) sheet or ASTM B 221 (ASTM B 221M) extrusions, alloy and temper standard with manufacturer for type of use and finish indicated; thickness of 0.050 inch (1.27 mm) and as required to meet requirements. - 2. Insulation: Fill slats for insulated doors with manufacturer's standard thermal insulation complying with maximum flame-spread and smoke-developed indexes of 75 and 450, respectively, according to ASTM E 84. Enclose insulation completely within slat faces. - 3. Metal Interior Curtain-Slat Facing: Match metal of exterior curtain-slat face. - Gasket Seal: Provide insulated slats with manufacturer's standard interior-to-exterior thermal break or with continuous gaskets between slats. - B. Endlocks and Windlocks for Service Doors: Malleable-iron casings galvanized after fabrication, secured to curtain slats with galvanized rivets or high-strength nylon. Provide locks on not less than alternate curtain slats for curtain alignment and resistance against lateral movement. - C. Bottom Bar for Service Doors: Consisting of two angles, each not less than 1-1/2 by 1-1/2 by 1/8 inch (38 by 38 by 3 mm) thick; fabricated from manufacturer's standard hot-dip galvanized steel, stainless steel, or aluminum extrusions to match curtain slats and finish. - D. Curtain Jamb Guides: Manufacturer's standard angles or channels and angles of same material and finish as curtain slats unless otherwise indicated, with sufficient depth and strength to retain curtain, to allow curtain to operate smoothly, and to withstand loading. Slot bolt holes for guide adjustment. Provide removable stops on guides to prevent overtravel of curtain, and a continuous bar for holding windlocks. # 2.2 HOOD - A. General: Form sheet metal hood to entirely enclose coiled curtain and operating mechanism at opening head. Contour to fit end brackets to which hood is attached. Roll and reinforce top and bottom edges for stiffness. Form closed ends for surface-mounted hoods and fascia for any portion of between-jamb mounting that projects beyond wall face. Equip hood with intermediate support brackets as required to prevent sagging. - 1. Galvanized Steel: Nominal 0.028-inch- (0.71-mm-) thick, hot-dip galvanized steel sheet with G90 (Z275) zinc coating, complying with ASTM A 653/A 653M. - Aluminum: 0.040-inch- (1.02-mm-) thick aluminum sheet complying with ASTM B 209 (ASTM B 209M), of alloy and temper recommended by manufacturer and finisher for type of use and finish indicated. #### 2.3 LOCKING DEVICES - A. Slide Bolt: Fabricate with side-locking bolts to engage through slots in tracks for locking by padlock, located on both left and right jamb sides, operable from coil side. - B. Chain Lock Keeper: Suitable for padlock. C. Safety Interlock Switch: Equip power-operated doors with safety interlock switch to disengage power supply when door is locked. #### 2.4 CURTAIN ACCESSORIES - A. Weatherseals: Equip each exterior door with weather-stripping gaskets fitted to entire perimeter of door for a weathertight installation, unless otherwise indicated. - 1. At door head, use 1/8-inch- (3-mm-) thick, replaceable, continuous sheet secured to inside of hood. - 2. At door jambs, use replaceable, adjustable, continuous, flexible, 1/8-inch- (3-mm-) thick seals of flexible vinyl, rubber, or neoprene. - B. Push/Pull Handles: Equip each push-up-operated or emergency-operated door with lifting handles on each side of door, finished to match door. - 1. Provide pull-down straps or pole hooks for doors more than 84 inches (2130 mm) high. # 2.5 COUNTERBALANCING MECHANISM - A. General: Counterbalance doors by means of manufacturer's standard mechanism with an adjustable-tension, steel helical torsion spring mounted around a steel shaft and contained in a spring barrel connected to top of curtain with barrel rings. Use grease-sealed bearings or self-lubricating graphite bearings for rotating members. - B. Counterbalance Barrel: Fabricate spring barrel of manufacturer's standard hot-formed, structural-quality, welded or seamless carbon-steel pipe, of sufficient diameter and wall thickness to support rolled-up curtain without distortion of slats and to limit barrel deflection to not more than 0.03 in./ft. (2.5 mm/m) of span under full load. - C. Spring Balance: One or more oil-tempered, heat-treated steel helical torsion springs. Size springs to counterbalance weight of curtain, with uniform adjustment accessible from outside barrel. Secure ends of springs to barrel and shaft with cast-steel barrel plugs. - D. Torsion Rod for Counterbalance Shaft: Fabricate of manufacturer's standard cold-rolled steel, sized to hold fixed spring ends and carry torsional load. - E. Brackets: Manufacturer's standard mounting brackets of either cast iron or cold-rolled steel plate. # 2.6 ELECTRIC DOOR OPERATORS - A. General: Electric door operator assembly of size and capacity recommended and
provided by door manufacturer for door and operation-cycles requirement specified, with electric motor and factory-prewired motor controls, starter, gear-reduction unit, solenoid-operated brake, clutch, remote-control stations, control devices, integral gearing for locking door, and accessories required for proper operation. - 1. Comply with NFPA 70. - 2. Provide control equipment complying with NEMA ICS 1, NEMA ICS 2, and NEMA ICS 6, with NFPA 70 Class 2 control circuit, maximum 24 V, ac or dc. - B. Usage Classification: Electric operator and components capable of operating for not less than number of cycles per hour indicated for each door. - C. Door Operator Location(s): Operator location indicated for each door. - 1. Top-of-Hood Mounted: Operator is mounted to the right or left door head plate with the operator on top of the door-hood assembly and connected to the door drive shaft with drive chain and sprockets. Headroom is required for this type of mounting. - 2. Front-of-Hood Mounted: Operator is mounted to the right or left door head plate with the operator on coil side of the door-hood assembly and connected to the door drive shaft with drive chain and sprockets. Front clearance is required for this type of mounting. - 3. Wall Mounted: Operator is mounted to the inside front wall on the left or right side of door and connected to door drive shaft with drive chain and sprockets. Side room is required for this type of mounting. Wall mounted operator can also be mounted above or below shaft; if above shaft, headroom is required. - 4. Bench Mounted: Operator is mounted to the right or left door head plate and connected to the door drive shaft with drive chain and sprockets. Side room is required for this type of mounting. - D. Electric Motors: Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Division 11 Section "Common Motor Requirements for Equipment" unless otherwise indicated. - 1. Electrical Characteristics: a. Phase: Single phase.b. Volts: 120 Volt.c. Hertz: 60. - 2. Motor Type and Controller: Reversible motor and controller (disconnect switch) for motor exposure indicated - 3. Motor Size: Basis of design size is ¾ HP, 120V, single phase. Otherwise, large enough to start, accelerate, and operate door in either direction from any position, at a speed not less than 8 in./sec. (203 mm/s) and not more than 12 in./sec. (305 mm/s), without exceeding nameplate ratings or service factor. - Operating Controls, Controllers (Disconnect Switches), Wiring Devices, and Wiring: Manufacturer's standard unless otherwise indicated. - 5. Coordinate wiring requirements and electrical characteristics of motors and other electrical devices with building electrical system and each location where installed. Where installed motor deviates from basis of design noted above, contractor is responsible to coordinate and implement required changes in electrical design to accommodate installed components. - E. Limit Switches: Equip each motorized door with adjustable switches interlocked with motor controls and set to automatically stop door at fully opened and fully closed positions. - F. Obstruction Detection Device: Equip motorized door with either of two indicated external automatic safety sensor capable of protecting full width of door opening. For non-fire-rated doors, activation of device immediately stops and reverses downward door travel. - 1. Photoelectric Sensor: Manufacturer's standard system designed to detect an obstruction in door opening without contact between door and obstruction. - a. Self-Monitoring Type: Designed to interface with door operator control circuit to detect damage to or disconnection of sensing device. When self-monitoring feature is activated, door closes only with sustained pressure on close button. - 2. Sensor Edge: Automatic safety sensor edge, located within astragal or weather stripping mounted to bottom bar. Contact with sensor activates device. Connect to control circuit using manufacturer's standard take-up reel or self-coiling cable. - a. Self-Monitoring Type: Four-wire configured device designed to interface with door operator control circuit to detect damage to or disconnection of sensor edge. - G. Remote-Control Station: Momentary-contact, three-button control station with push-button controls labeled "Open," "Close," and "Stop." - Interior units, full-guarded, surface-mounted, heavy-duty type, with general-purpose NEMA ICS 6, Type 1 enclosure. - H. Emergency Manual Operation: Equip each electrically powered door with capability for emergency manual operation. Design manual mechanism so required force for door operation does not exceed 25 lbf (111 N). - I. Emergency Operation Disconnect Device: Equip operator with hand-operated disconnect mechanism for automatically engaging manual operator and releasing brake for emergency manual operation while disconnecting motor without affecting timing of limit switch. Mount mechanism so it is accessible from floor level. Include interlock device to automatically prevent motor from operating when emergency operator is engaged. - J. Motor Removal: Design operator so motor may be removed without disturbing limit-switch adjustment and without affecting emergency manual operation. - K. Audible and Visual Signals: Audible alarm and visual indicator lights in compliance with regulatory requirements for accessibility. #### 2.7 DOOR ASSEMBLY - A. Insulated Service Door: Overhead coiling door formed with curtain of interlocking metal slats. - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. ACME Rolling Doors. - b. Alpine Overhead Doors, Inc. - c. AlumaTek, Inc. - d. C.H.I. Overhead Doors. - e. City-Gates. - f. Cookson Company. - g. Cornell Iron Works, Inc. - h. Dynamic Closures Corp. - i. Lawrence Roll-Up Doors, Inc. - j. Mahon Door Corporation. - k. McKeon Rolling Steel Door Company, Inc. - Metro Door. - m. Overhead Door Corporation. - n. QMI Security Solutions. - o. Raynor. - p. Southwestern Steel Rolling Door Co. - q. Wayne-Dalton Corp. - r. Windsor Door. - B. Operation Cycles: Not less than 50,000. - 1. Include tamperproof cycle counter. - C. Curtain R-Value: 5.0 deg F x h x sq. ft./Btu (0.881 K x sq. m/W). - D. Door Curtain Material: Galvanized steel or Aluminum. - E. Door Curtain Slats: Flat profile slats of 1-7/8-inch (48-mm) to 3-1/4-inch (83-mm) center-to-center height. - 1. Insulated-Slat Interior Facing: Metal. - F. Curtain Jamb Guides: Galvanized steel with exposed finish matching curtain slats. Provide continuous integral wear strips to prevent metal-to-metal contact and to minimize operational noise. - G. Hood: Galvanized steel or Aluminum. - 1. Shape: Manufacturer's standard. - 2. Mounting: Face of wall. - H. Locking Devices: Equip door with locking device assembly. - I. Electric Door Operator: - 1. Usage Classification: Continuous duty industrial, gearhead. - 2. Operator Location: Manufacturer standard. - 3. Motor Exposure: Interior. - 4. Emergency Manual Operation: Chain type. - 5. Obstruction-Detection Device: Automatic photoelectric sensor, or electric sensor edge on bottom bar, or pneumatic sensor edge on bottom bar. - Sensor Edge Bulb Color: Black. - 6. Remote-Control Station: Interior, verify preferred location with building user before rough-in and wiring. - J. Door Finish: - Baked-Enamel or Powder-Coated Finish: Color as selected by Architect from manufacturer's full range. - 2. Factory Prime Finish: Manufacturer's standard color. - 3. Interior Curtain-Slat Facing: Match finish of exterior curtain-slat face. #### 2.8 GENERAL FINISH REQUIREMENTS - A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes. - B. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast. # 2.9 ALUMINUM FINISHES - A. Mill Finish: Manufacturer's standard. - B. Baked-Enamel or Powder-Coat Finish: AAMA 2603. Comply with coating manufacturer's written instructions for cleaning, conversion coating, application, and baking. # 2.10 STEEL AND GALVANIZED-STEEL FINISHES - A. Factory Prime Finish: Manufacturer's standard primer, compatible with field-applied finish. Comply with coating manufacturer's written instructions for cleaning, pretreatment, application, and minimum dry film thickness. - B. Baked-Enamel or Powder-Coat Finish: Manufacturer's standard baked-on finish consisting of prime coat and thermosetting topcoat. Comply with coating manufacturer's written instructions for cleaning, pretreatment, application, and minimum dry film thickness. #### PART 3 - EXECUTION #### 3.1 EXAMINATION - A. Examine substrates areas and conditions, with Installer present, for compliance with requirements for substrate construction and other conditions affecting performance of the Work. - B. Examine locations of electrical connections. - C. Proceed with installation only after unsatisfactory conditions have been corrected. #### 3.2 INSTALLATION - A. Install overhead coiling doors and operating equipment complete with necessary hardware, anchors, inserts, hangers, and equipment supports; according to manufacturer's written instructions and as specified. - B. Install overhead coiling doors, hoods, and operators at the mounting locations indicated for each door. - C. Accessibility: Install overhead coiling doors, switches, and controls along accessible routes in compliance with regulatory requirements for accessibility. #### 3.3 STARTUP SERVICE - A. Engage a factory-authorized service representative to perform startup service. - 1. Perform installation and startup checks according to manufacturer's written instructions. - 2. Test and adjust controls and safeties. Replace
damaged and malfunctioning controls and equipment. - Test door closing when activated by detector or alarm-connected fire-release system. Reset doorclosing mechanism after successful test. # 3.4 ADJUSTING - A. Adjust hardware and moving parts to function smoothly so that doors operate easily, free of warp, twist, or distortion. - B. Lubricate bearings and sliding parts as recommended by manufacturer. - C. Adjust seals to provide weather-tight fit around entire perimeter. # 3.5 DEMONSTRATION A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain overhead coiling doors. # END OF SECTION 083323 # SECTION 087100 - DOOR HARDWARE ### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following: - 1. Commercial door hardware for the following: - Swinging doors. - b. Other doors to the extent indicated. - 2. Cylinders for doors specified in other Sections. - B. Related Sections include the following: - 1. Division 08 Section "Hollow Metal Doors and Frames" for astragals provided as part of fire-rated labeled assemblies and for door silencers provided as part of hollow-metal frames. - Division 08 Section "Overhead Coiling Doors" for door hardware provided as part of overhead door assemblies. - 3. Division 13 Section "Metal Building Systems" for door hardware, except cylinders. - C. Products furnished, but not installed, under this Section include the following. Coordinating, purchasing, delivering, and scheduling remain requirements of this Section. - 1. Thresholds weather stripping and cylinders for locks specified in other Sections. - 2. Permanent cores to be installed by Owner. # 1.3 SUBMITTALS - A. Product Data: Include construction and installation details, material descriptions, dimensions of individual components and profiles, and finishes. - B. Samples for Initial Selection: For each finish, color, and texture required for each type of door hardware indicated. - C. Samples for Verification: For exposed door hardware of each type, in specified finish, full size. Tag with full description for coordination with the door hardware sets. Submit Samples before, or concurrent with, submission of the final door hardware sets. - 1. Samples will be returned to Contractor. Units that are acceptable and remain undamaged through submittal, review, and field comparison process may, after final check of operation, be incorporated into the Work, within limitations of keying requirements. - D. Product Certificates: For electrified door hardware, signed by product manufacturer. - Certify that door hardware approved for use on types and sizes of labeled fire doors complies with listed fire door assemblies. - E. Qualification Data: For Installer. - F. Product Test Reports: Based on evaluation of comprehensive tests performed by manufacturer and witnessed by a qualified testing agency, for locks latches and closers. - G. Maintenance Data: For each type of door hardware to include in maintenance manuals. Include final hardware and keying schedule. - H. Warranty: Special warranty specified in this Section. ### 1.4 QUALITY ASSURANCE - A. Installer Qualifications: An employer of workers trained and approved by lock manufacturer. - 1. Installer's responsibilities include supplying and installing door hardware and providing a qualified Architectural Hardware Consultant available during the course of the Work to consult with Contractor, Architect, and Owner about door hardware and keying. - 2. Installer shall have warehousing facilities in Project's vicinity. - 3. Scheduling Responsibility: Preparation of door hardware and keying schedules. - Engineering Responsibility: Preparation of data for electrified door hardware, including Shop Drawings, based on testing and engineering analysis of manufacturer's standard units in assemblies similar to those indicated for this Project. - B. Source Limitations: Obtain each type and variety of door hardware from a single manufacturer, unless otherwise indicated. - C. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination." Review methods and procedures related to electrified door hardware including, but not limited to, the following: - 1. Inspect and discuss electrical roughing-in and other preparatory work performed by other trades. - 2. Review sequence of operation for each type of electrified door hardware. - 3. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays. - 4. Review required testing, inspecting, and certifying procedures. ### 1.5 DELIVERY, STORAGE, AND HANDLING - A. Inventory door hardware on receipt and provide secure lock-up for door hardware delivered to Project site. - B. Tag each item or package separately with identification related to the final door hardware sets, and include basic installation instructions, templates, and necessary fasteners with each item or package. - C. Deliver keys and permanent cores to Owner by registered mail or overnight package service. #### 1.6 COORDINATION A. Templates: Distribute door hardware templates for doors, frames, and other work specified to be factory prepared for installing door hardware. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing door hardware to comply with indicated requirements. #### 1.7 WARRANTY - A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of door hardware that fail in materials or workmanship within specified warranty period. - 1. Failures include, but are not limited to, the following: - a. Structural failures including excessive deflection, cracking, or breakage. - b. Faulty operation of operators and door hardware. - c. Deterioration of metals, metal finishes, and other materials beyond normal weathering and use. - 2. Warranty Period: Three years from date of Substantial Completion, except as follows: - a. Exit Devices: Two years from date of Substantial Completion. - b. Manual Closers: 10 years from date of Substantial Completion. # 1.8 MAINTENANCE SERVICE A. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions as needed for Owner's continued adjustment, maintenance, and removal and replacement of door hardware. # PART 2 - PRODUCTS #### 2.1 SCHEDULED DOOR HARDWARE - A. General: Provide door hardware for each door to comply with requirements in this Section. - Door Hardware Sets: Provide quantity, item, size, finish or color indicated, and named manufacturers' products and products complying with BHMA standard referenced. - B. Designations: Requirements for design, grade, function, finish, size, and other distinctive qualities of each type of door hardware are indicated in Part 3 "Door Hardware Sets" Article. Products are identified by using door hardware designations, as follows: - 1. References to BHMA Standards: Provide products complying with these standards and requirements for description, quality, and function. - C. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection: - 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified. # 2.2 HINGES, GENERAL - A. Quantity: Provide the following, unless otherwise indicated: - 1. Two Hinges: For doors with heights up to 60 inches (1524 mm). - 2. Three Hinges: For doors with heights 61 to 90 inches (1549 to 2286 mm). - 3. Four Hinges: For doors with heights 91 to 120 inches (2311 to 3048 mm). - 4. For doors with heights more than 120 inches (3048 mm), provide 4 hinges, plus 1 hinge for every 30 inches (750 mm) of door height greater than 120 inches (3048 mm). - B. Template Requirements: Except for hinges and pivots to be installed entirely (both leaves) into wood doors and frames, provide only template-produced units. - C. Hinge Weight: Unless otherwise indicated, provide the following: - 1. Entrance Doors: Heavy-weight hinges. - 2. Doors with Closers: Antifriction-bearing hinges. - 3. Interior Doors: Heavy-weight hinges. - D. Hinge Base Metal: Unless otherwise indicated, provide the following: - 1. Exterior Hinges: Stainless steel, with stainless-steel pin. - 2. Interior Hinges: Stainless steel, with stainless-steel pin. - 3. Hinges for Fire-Rated Assemblies: Stainless steel, with stainless-steel pin. - E. Hinge Options: Where indicated below, in door hardware sets, or on Drawings: - 1. Maximum Security Pin: Fix pin in hinge barrel after it is inserted. - Nonremovable Pins: Provide set screw in hinge barrel that, when tightened into a groove in hinge pin, prevents removal of pin while door is closed; for outswinging exterior doors and outswinging interior doors with locks. - 3. Corners: Square. - F. Fasteners: Comply with the following: - 1. Machine Screws: For metal doors and frames. Install into drilled and tapped holes. - 2.3 HINGES - A. Butts and Hinges: BHMA A156.1. - B. Template Hinge Dimensions: BHMA A156.7. - C. Manufacturers: - 1. Baldwin Hardware Corporation (BH). - 2. Bommer Industries, Inc. (BI). - 3. Cal-Royal Products, Inc. (CRP). - 4. Hager Companies (HAG). - 5. Lawrence Brothers, Inc. (LB). - 6. McKinney Products Company; an ASSA ABLOY Group company (MCK). - 7. PBB, Inc. (PBB). - 8. Stanley Commercial Hardware; Div. of The Stanley Works (STH). # 2.4 LOCKS AND LATCHES, GENERAL - A. Accessibility Requirements: Where indicated to comply with accessibility requirements, comply with the U.S. Architectural & Transportation Barriers Compliance Board's "Americans with Disabilities Act (ADA), Accessibility
Guidelines for Buildings and Facilities (ADAAG)" and ANSI A117.1. - 1. Provide operating devices that do not require tight grasping, pinching, or twisting of the wrist and that operate with a force of not more than 5 lbf (22 N). - B. Latches and Locks for Means of Egress Doors: Comply with NFPA 101. Latches shall not require more than 15 lbf (67 N) to release the latch. Locks shall not require use of a key, tool, or special knowledge for operation. - C. Lock Trim: - 1. Levers: Wrought. - 2. Escutcheons (Roses): Wrought. - B. Dummy Trim: Match lever lock trim and escutcheons. - D. Lock Throw: Comply with testing requirements for length of bolts required for labeled fire doors, and as follows: - 1. Bored Locks: Minimum 1/2-inch (13-mm) latchbolt throw. - 2. Mortise Locks: Minimum 3/4-inch (19-mm) latchbolt throw. - 3. Deadbolts: Minimum 1-inch (25-mm) bolt throw. - E. Rabbeted Meeting Doors: Provide special rabbeted front and strike on locksets for rabbeted meeting stiles. - F. Backset: 2-3/4 inches (70 mm), unless otherwise indicated. - G. Strikes: Manufacturer's standard strike with strike box for each latchbolt or lock bolt, with curved lip extended to protect frame, finished to match door hardware set, and as follows: - 1. Strikes for Bored Locks and Latches: BHMA A156.2. - 2. Strikes for Mortise Locks and Latches: BHMA A156.13. - 3. Strikes for Interconnected Locks and Latches: BHMA A156.12. - 4. Strikes for Auxiliary Deadlocks: BHMA A156.5. - 5. Flat-Lip Strikes: For locks with three-piece antifriction latchbolts, as recommended by manufacturer. - 6. Extra-Long-Lip Strikes: For locks used on frames with applied wood casing trim. - 7. Aluminum-Frame Strike Box: Manufacturer's special strike box fabricated for aluminum framing. # 2.5 MECHANICAL LOCKS AND LATCHES - A. Lock Functions: Function numbers and descriptions indicated in door hardware sets comply with the following: - 1. Bored Locks: BHMA A156.2. - 2. Mortise Locks: BHMA A156.13. - 3. Interconnected Locks: BHMA A156.12. - B. Bored Locks: BHMA A156.2, Grade 1; Series 4000. - 1. Manufacturers: - a. Corbin Russwin Architectural Hardware; an ASSA ABLOY Group company (CR). - C. Mortise Locks: Stamped steel case with steel or brass parts; BHMA A156.13, Grade 1; Series 1000. - Manufacturers: - a. Corbin Russwin Architectural Hardware; an ASSA ABLOY Group company (CR). Accommodate IC type cores provided by Owner. # 2.6 AUXILIARY LOCKS AND LATCHES - A. Auxiliary Locks: BHMA A156.5, Grade 1. - 1. Manufacturers: - a. ABLOY Security, Inc.; an ASSA ABLOY Group company (ABL). - b. Accurate Lock & Hardware Co. (ALH). - c. Adams Rite Manufacturing Co. (ARM). - d. Arrow USA; an ASSA ABLOY Group company (ARW). - e. Best Access Systems; Div. of The Stanley Works (BAS). - f. Cal-Royal Products, Inc. (CRP). - g. Falcon Lock; an Ingersoll-Rand Company (FAL). - h. Marks USA (MKS). - i. Medeco Security Locks, Inc.; an ASSA ABLOY Group company (MED). - j. PDQ Manufacturing (PDQ). - k. SARGENT Manufacturing Company; an ASSA ABLOY Group company (SGT). - I. Schlage Commercial Lock Division; an Ingersoll-Rand Company (SCH). - m. Weiser Lock; a Masco Company (WEI). - n. Yale Commercial Locks and Hardware; an ASSA ABLOY Group company (YAL). #### 2.7 SELF-CONTAINED ELECTRONIC LOCKS #### 2.8 DOOR BOLTS - A. Bolt Throw: Comply with testing requirements for length of bolts required for labeled fire doors, and as follows: - 1. Half-Round Surface Bolts: Minimum 7/8-inch (22-mm) throw. - 2. Interlocking Surface Bolts: Minimum 15/16-inch (24-mm) throw. - 3. Fire-Rated Surface Bolts: Minimum 1-inch (25-mm) throw; listed and labeled for fire-rated doors. - 4. - B. Dustproof Strikes: BHMA A156.16, Grade 1. - C. Surface Bolts: BHMA A156.16, Grade 1. - 1. Flush Bolt Heads: Minimum of 1/2-inch- (13-mm-) diameter rods of brass, bronze, or stainless steel with minimum 12-inch- (305-mm-) long rod for doors up to 84 inches (2134 mm) in height. Provide longer rods as necessary for doors exceeding 84 inches (2134 mm). - 2. Manufacturers: - a. Burns Manufacturing Incorporated (BM). - b. Don-Jo Mfg., Inc. (DJO). - c. Door Controls International (DCI). - d. Glynn-Johnson; an Ingersoll-Rand Company (GJ). - e. Hager Companies (HAG). - f. IVES Hardware; an Ingersoll-Rand Company (IVS). - g. Stanley Commercial Hardware; Div. of The Stanley Works (STH). - h. Trimco (TBM). - D. Manual Flush Bolts: BHMA A156.16, Grade 1; designed for mortising into door edge. - 1. Manufacturers: - a. Adams Rite Manufacturing Co. (ARM). - b. Burns Manufacturing Incorporated (BM). - c. Don-Jo Mfg., Inc. (DJO). - d. Door Controls International (DCI). - e. Glynn-Johnson; an Ingersoll-Rand Company (GJ). - f. Hager Companies (HAG). - g. Hiawatha, Inc. (HIA). - h. IVES Hardware; an Ingersoll-Rand Company (IVS). - i. Stanley Commercial Hardware; Div. of The Stanley Works (STH). j. Trimco (TBM). #### 2.9 EXIT DEVICES - A. Exit Devices: BHMA A156.3, Grade 1. - B. Accessibility Requirements: Where handles, pulls, latches, locks, and other operating devices are indicated to comply with accessibility requirements, comply with the U.S. Architectural & Transportation Barriers Compliance Board's "Americans with Disabilities Act (ADA), Accessibility Guidelines for Buildings and Facilities (ADAAG)" and ANSI A117.1. - 1. Provide operating devices that do not require tight grasping, pinching, or twisting of the wrist and that operate with a force of not more than 5 lbf (22 N). - C. Exit Devices for Means of Egress Doors: Comply with NFPA 101. Exit devices shall not require more than 15 lbf (67 N) to release the latch. Locks shall not require use of a key, tool, or special knowledge for operation. - D. Panic Exit Devices: Listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for panic protection, based on testing according to UL 305. - E. Fire Exit Devices: Devices complying with NFPA 80 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire and panic protection, based on testing according to UL 305 and NFPA 252. - F. Removable Mullions: BHMA A156.3. - G. Fire-Exit Removable Mullions: Provide removable mullions for use with fire exit devices complying with NFPA 80 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire and panic protection, based on testing according to UL 305 and NFPA 252. Mullions shall be used only with exit devices for which they have been tested. - H. Outside Trim: Lever with cylinder; material and finish to match locksets, unless otherwise indicated. - 1. Match design for locksets and latchsets, unless otherwise indicated. - I. Through Bolts: For exit devices and trim on metal doors. - J. Manufacturers: - 1. Adams Rite Manufacturing Co. (ARM). - 2. Arrow USA; an ASSA ABLOY Group company (ARW). - 3. Cal-Royal Products, Inc. (CRP). - 4. Corbin Russwin Architectural Hardware: an ASSA ABLOY Group company (CR). - 5. Detex Corporation (DTX). - 6. Door Controls International (DCI). - 7. DORMA Architectural Hardware; Member of The DORMA Group North America (DAH). - 8. Dor-O-Matic; an Ingersoll-Rand Company (DOR). - 9. Locknetics; an Ingersoll-Rand Company (LSE). - 10. Monarch Exit Devices & Door Hardware; an Ingersoll-Rand Company (MON). - 11. Precision Hardware, Inc. (PH). - 12. Rutherford Controls Int'l. Corp. (RCI). - 13. SARGENT Manufacturing Company; an ASSA ABLOY Group company (SGT). - 14. Von Duprin; an Ingersoll-Rand Company (VD). - 15. Yale Commercial Locks and Hardware; an ASSA ABLOY Group company (YAL). #### 2.10 LOCK CYLINDERS - A. Hi-Security Lock Cylinders: Provided and installed by Owner. Heavy-Duty, institutional grade, key-in-lever cylindrical type, match Owner's requirements for lockset and cylinder type. Basis of design is Schlage Dseries locksets with ASSA cylinders. - 1. IC type cores. - B. Construction Keying: Comply with the following: - Construction Master Keys: Provide cylinders with feature that permits voiding of construction keys without cylinder removal. Provide 10 construction master keys. - Construction Cores: Provide construction cores that are replaceable by permanent cores. Provide 10 construction master keys. - a. Replace construction cores with permanent cores as directed by Owner. - 3. Manufacturer: Same manufacturer as for locks and latches. #### 2.11 KEYING - 1. Keying System: Match Owner's keying system. - B. Key Lock Boxes: Designed for storage of two keys. - 1. Manufacturers: - a. ABLOY Security, Inc.; an ASSA ABLOY Group company (ABL). - b. Knox Company (KNX). - c. Supra Products (SUP). # 2.12 OPERATING TRIM - A. Standard: BHMA A156.6. - B. Materials: Fabricate from stainless steel, unless otherwise indicated. - C. Manufacturers: - 1. Burns Manufacturing Incorporated (BM). - 2. Don-Jo Mfg., Inc. (DJO). - 3. Forms + Surfaces (FS). - 4. Hager Companies (HAG). - 5. Hiawatha, Inc. (HIA). - 6. IVES Hardware; an Ingersoll-Rand Company (IVS). - 7. Rockwood Manufacturing Company (RM). - 8. Trimco (TBM). #### 2.13 CLOSERS A. Accessibility Requirements: Where handles, pulls, latches, locks, and other operating devices are indicated to comply with accessibility requirements, comply with the U.S. Architectural & Transportation Barriers Compliance Board's "Americans with Disabilities Act (ADA), Accessibility Guidelines for Buildings and Facilities (ADAAG)" and ANSI A117.1. - 1. Comply with the following maximum opening-force requirements: - a. Interior, Non-Fire-Rated Hinged Doors: 5 lbf (22.2 N) applied perpendicular to door. - b. Fire Doors: Minimum opening force allowable by authorities having jurisdiction. - B. Door Closers for Means of Egress Doors: Comply with NFPA 101. Door closers shall not require more than 30 lbf (133 N) to set door in motion and not more than 15 lbf (67 N) to open door to minimum required width. - C. Size of Units: Unless otherwise indicated, comply with manufacturer's written recommendations for size
of door closers depending on size of door, exposure to weather, and anticipated frequency of use. Provide factory-sized closers, adjustable to meet field conditions and requirements for opening force. - D. Surface Closers: BHMA A156.4, Grade 1. Provide type of arm required for closer to be located on non-public side of door, unless otherwise indicated. - Manufacturers: - a. Arrow USA; an ASSA ABLOY Group company (ARW). - b. Corbin Russwin Architectural Hardware; an ASSA ABLOY Group company (CR). - c. DORMA Architectural Hardware; Member of The DORMA Group North America (DAH). - d. Dor-O-Matic: an Ingersoll-Rand Company (DOR). - e. LCN Closers; an Ingersoll-Rand Company (LCN). - f. Norton Door Controls; an ASSA ABLOY Group company (NDC). - g. Rixson Specialty Door Controls; an ASSA ABLOY Group company (RIX). - h. SARGENT Manufacturing Company; an ASSA ABLOY Group company (SGT). - i. Yale Commercial Locks and Hardware; an ASSA ABLOY Group company (YAL). - E. Coordinators: BHMA A156.3. #### 2.14 PROTECTIVE TRIM UNITS - A. Size: 1-1/2 inches (38 mm) less than door width on push side and 1/2 inch (13 mm) less than door width on pull side, by height specified in door hardware sets. - B. Fasteners: Manufacturer's standard machine or self-tapping screws. - C. Metal Protective Trim Units: BHMA A156.6; beveled top and 2 sides; fabricated from the following material: - 1. Material: 0.050-inch- (1.3-mm-) thick stainless steel. - 2. Manufacturers: - a. American Floor Products Co., Inc. (AFP). - b. Baldwin Hardware Corporation (BH). - c. Burns Manufacturing Incorporated (BM). - d. Don-Jo Mfg., Inc. (DJO). - e. Hager Companies (HAG). - f. Hiawatha, Inc. (HIA). - g. IPC Door and Wall Protection Systems, Inc.; Div. of InPro Corporation (IPC). - h. IVES Hardware; an Ingersoll-Rand Company (IVS). - i. Pawling Corporation (PAW). - j. Rockwood Manufacturing Company (RM). - k. Trimco (TBM). #### 2.15 STOPS AND HOLDERS - A. Stops and Bumpers: BHMA A156.16, Grade 1. - Provide wall stops for doors unless floor or other type stops are scheduled or indicated. Do not mount floor stops where they will impede traffic. Where floor or wall stops are not appropriate, provide overhead holders. - B. Mechanical Door Holders: BHMA A156.16, Grade 1. - C. Combination Floor and Wall Stops and Holders: BHMA A156.8, Grade 1. - D. Combination Overhead Stops and Holders: BHMA A156.8, Grade 1. - E. Silencers for Metal Door Frames: BHMA A156.16, Grade 1; neoprene or rubber, minimum diameter 1/2 inch (13 mm); fabricated for drilled-in application to frame. #### F. Manufacturers: - 1. Architectural Builders Hardware Mfg., Inc. (ABH). - 2. Baldwin Hardware Corporation (BH). - 3. Burns Manufacturing Incorporated (BM). - 4. Cal-Royal Products, Inc. (CRP). - 5. Don-Jo Mfg., Inc. (DJO). - 6. Door Controls International (DCI). - 7. DORMA Architectural Hardware; Member of The DORMA Group North America (DAH). - 8. Dor-O-Matic; an Ingersoll-Rand Company (DOR). - 9. Glynn-Johnson; an Ingersoll-Rand Company (GJ). - 10. Hager Companies (HAG). - 11. HES, Inc.; an ASSA ABLOY Group company (HES). - 12. Hiawatha, Inc. (HIA). - 13. IVES Hardware; an Ingersoll-Rand Company (IVS). - 14. Rixson Specialty Door Controls; an ASSA ABLOY Group company (RIX). - 15. Rockwood Manufacturing Company (RM). - 16. SARGENT Manufacturing Company; an ASSA ABLOY Group company (SGT). - 17. Stanley Commercial Hardware; Div. of The Stanley Works (STH). - 18. Trimco (TBM). # 2.16 DOOR GASKETING - A. Standard: BHMA A156.22. - B. General: Provide continuous weather-strip gasketing on exterior doors and provide smoke, light, or sound gasketing on interior doors where indicated or scheduled. Provide noncorrosive fasteners for exterior applications and elsewhere as indicated. - 1. Perimeter Gasketing: Apply to head and jamb, forming seal between door and frame. - 2. Meeting Stile Gasketing: Fasten to meeting stiles, forming seal when doors are closed. - 3. Door Bottoms: Apply to bottom of door, forming seal with threshold when door is closed. - C. Air Leakage: Not to exceed 0.50 cfm per foot (0.000774 cu. m/s per m) of crack length for gasketing other than for smoke control, as tested according to ASTM E 283. - D. Smoke-Labeled Gasketing: Assemblies complying with NFPA 105 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for smoke-control ratings indicated, based on testing according to UL 1784. - 1. Provide smoke-labeled gasketing on 20-minute-rated doors and on smoke-labeled doors. - E. Replaceable Seal Strips: Provide only those units where resilient or flexible seal strips are easily replaceable and readily available from stocks maintained by manufacturer. - F. Gasketing Materials: ASTM D 2000 and AAMA 701/702. - G. Manufacturers: - 1. Hager Companies (HAG). - 2. M-D Building Products, Inc. (MD). - 3. National Guard Products (NGP). - 4. Pemko Manufacturing Co. (PEM). - 5. Reese Enterprises (RE). - 6. Sealeze; a unit of Jason Incorporated (SEL). - 7. Zero International (ZRO). #### 2.17 THRESHOLDS - A. Standard: BHMA A156.21. - B. Accessibility Requirements: Where thresholds are indicated to comply with accessibility requirements, comply with the U.S. Architectural & Transportation Barriers Compliance Board's "Americans with Disabilities Act (ADA), Accessibility Guidelines for Buildings and Facilities (ADAAG)" and ANSI A117.1. - 1. Bevel raised thresholds with a slope of not more than 1:2. Provide thresholds not more than 1/2 inch (13 mm) high. - C. Thresholds for Means of Egress Doors: Comply with NFPA 101. Maximum 1/2 inch (13 mm) high. - D. Manufacturers: - 1. Hager Companies (HAG). - 2. M-D Building Products, Inc. (MD). - 3. National Guard Products (NGP). - 4. Pemko Manufacturing Co. (PEM). - 5. Reese Enterprises (RE). - 6. Rixson Specialty Door Controls; an ASSA ABLOY Group company (RIX). - 7. Sealeze; a unit of Jason Incorporated (SEL). - 8. Zero International (ZRO). ### 2.18 MISCELLANEOUS DOOR HARDWARE - A. Auxiliary Hardware: BHMA A156.16, Grade 1. - 1. Manufacturers: - a. Baldwin Hardware Corporation (BH). - b. Cal-Royal Products, Inc. (CRP). - c. Don-Jo Mfg., Inc. (DJO). - d. Hager Companies (HAG). - e. Lawrence Brothers, Inc. (LB). - f. Rockwood Manufacturing Company (RM). - g. Stanley Commercial Hardware; Div. of The Stanley Works (STH). - h. Trimco (TBM). #### 2.19 FABRICATION - A. Manufacturer's Nameplate: Do not provide products that have manufacturer's name or trade name displayed in a visible location except in conjunction with required fire-rated labels and as otherwise approved by Architect. - 1. Manufacturer's identification is permitted on rim of lock cylinders only. - B. Base Metals: Produce door hardware units of base metal, fabricated by forming method indicated, using manufacturer's standard metal alloy, composition, temper, and hardness. Furnish metals of a quality equal to or greater than that of specified door hardware units and BHMA A156.18. Do not furnish manufacturer's standard materials or forming methods if different from specified standard. - C. Fasteners: Provide door hardware manufactured to comply with published templates generally prepared for machine, wood, and sheet metal screws. Provide screws according to commercially recognized industry standards for application intended, except aluminum fasteners are not permitted. Provide Phillips flat-head screws with finished heads to match surface of door hardware, unless otherwise indicated. - Concealed Fasteners: For door hardware units that are exposed when door is closed, except for units already specified with concealed fasteners. Do not use through bolts for installation where bolt head or nut on opposite face is exposed unless it is the only means of securely attaching the door hardware. Where through bolts are used on hollow door and frame construction, provide sleeves for each through bolt. - 2. Steel Machine or Wood Screws: For the following fire-rated applications: - a. Mortise hinges to doors. - b. Strike plates to frames. - c. Closers to doors and frames. - 3. Steel Through Bolts: For the following fire-rated applications unless door blocking is provided: - a. Surface hinges to doors. - b. Closers to doors and frames. - c. Surface-mounted exit devices. - 4. Spacers or Sex Bolts: For through bolting of hollow-metal doors. - 5. Fasteners for Wood Doors: Comply with requirements in DHI WDHS.2, "Recommended Fasteners for Wood Doors." # 2.20 FINISHES - A. Standard: BHMA A156.18, as indicated in door hardware sets. - B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping. - C. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in the same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast. #### PART 3 - EXECUTION #### 3.1 EXAMINATION - A. Examine doors and frames, with Installer present, for compliance with requirements for installation tolerances, labeled fire door assembly construction, wall and floor construction, and other conditions affecting performance. - B. Examine roughing-in for electrical power systems to verify actual locations of wiring connections before electrified door hardware installation. - C. Proceed with installation only after unsatisfactory conditions have been corrected. #### 3.2 PREPARATION - A. Steel Doors and Frames: Comply with DHI A115 Series. - 1. Surface-Applied Door Hardware: Drill and tap doors and frames according to ANSI A250.6. #### 3.3 INSTALLATION - A. Mounting Heights: Mount door hardware units at heights indicated as follows unless otherwise indicated or required to comply with governing regulations. - Standard Steel Doors and Frames: DHI's "Recommended Locations for
Architectural Hardware for Standard Steel Doors and Frames." - Custom Steel Doors and Frames: DHI's "Recommended Locations for Builders' Hardware for Custom Steel Doors and Frames." - B. Install each door hardware item to comply with manufacturer's written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstallation of surface protective trim units with finishing work specified in Division 09 Sections. Do not install surface-mounted items until finishes have been completed on substrates involved. - 1. Set units level, plumb, and true to line and location. Adjust and reinforce attachment substrates as necessary for proper installation and operation. - 2. Drill and countersink units that are not factory prepared for anchorage fasteners. Space fasteners and anchors according to industry standards. - C. Key Control System: Tag keys and place them on markers and hooks in key control system cabinet, as determined by final keying schedule. - D. Thresholds: Set thresholds for exterior and acoustical doors in full bed of sealant complying with requirements specified in Division 07 Section "Joint Sealants." #### 3.4 ADJUSTING - A. Initial Adjustment: Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements. - 1. Spring Hinges: Adjust to achieve positive latching when door is allowed to close freely from an open position of 30 degrees. - 2. Electric Strikes: Adjust horizontal and vertical alignment of keeper to properly engage lock bolt. - 3. Door Closers: Unless otherwise required by authorities having jurisdiction, adjust sweep period so that, from an open position of 70 degrees, the door will take at least 3 seconds to move to a point 3 inches (75 mm) from the latch, measured to the leading edge of the door. - B. Occupancy Adjustment: Approximately six months after date of Substantial Completion, Installers shall examine and readjust, including adjusting operating forces, each item of door hardware as necessary to ensure function of doors, door hardware, and electrified door hardware. #### 3.5 CLEANING AND PROTECTION - A. Clean adjacent surfaces soiled by door hardware installation. - B. Clean operating items as necessary to restore proper function and finish. - C. Provide final protection and maintain conditions that ensure that door hardware is without damage or deterioration at time of Substantial Completion. # 3.6 DEMONSTRATION A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain door hardware and door hardware finishes. Refer to Division 01 Section "Demonstration and Training." # 3.7 HARDWARE GROUPS - H1 Entry Doors (exterior) - 1. Hardware Function: F-109 w/ Lever & panic device - 2. Hinges: 1.5 pair, 4 1/2 x 4 1/2 Ball bearing - Wall stop - 4. Threshold - 5. Weather-stripping - Sweep/bottom seal - 7. Closer with hold open # H2 Storage/Equipment (exterior) - 1. Hardware Function: F-109 w/ Lever - 2. Hinges: 1.5 pair, 4 1/2 x 4 1/2 Ball bearing - Wall stop - 4. Threshold - 5. Silencers # H3 Overhead, Roll-Up Truck/Dock Door (exterior) - 1. General Door Hardware by door manufacturer - 2. Operator by door manufacturer - 3. Door Seal by door manufacturer - 4. Bottom Gasket by door manufacturer - 5. Lock Hasp (if approved for use with door operator by mfr.) #### END OF SECTION 087100 # SECTION 096513 - RESILIENT BASE AND ACCESSORIES ### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. Section Includes: - 1. Resilient base. - 2. Resilient molding accessories. - B. Related Sections: # 1.3 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Samples for Initial Selection: For each type of product indicated. - C. Samples for Verification: For each type of product indicated, in manufacturer's standard-size Samples but not less than 12 inches (300 mm) long, of each resilient product color, texture, and pattern required. # 1.4 QUALITY ASSURANCE A. Mockups: Provide resilient products with mockups specified in other Sections. # 1.5 DELIVERY, STORAGE, AND HANDLING A. Store resilient products and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F (10 deg C) or more than 90 deg F (32 deg C). # 1.6 PROJECT CONDITIONS - A. Maintain ambient temperatures within range recommended by manufacturer, but not less than 68 deg F (21 deg C) or more than 95 deg F (35 deg C), in spaces to receive resilient products during the following time periods: - 1. 48 hours before installation. - 2. During installation. - 3. 48 hours after installation. - B. Until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than 55 deg F (13 deg C) or more than 95 deg F (35 deg C). C. Install resilient products after other finishing operations, including painting, have been completed. #### 1.7 EXTRA MATERIALS - A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents. - 1. Furnish not less than 10 linear feet (3 linear m) for every 500 linear feet (150 linear m) or fraction thereof, of each type, color, pattern, and size of resilient product installed. #### PART 2 - PRODUCTS #### 2.1 RESILIENT BASE - A. Resilient Base: - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. Armstrong World Industries, Inc. - b. Burke Mercer Flooring Products; Division of Burke Industries, Inc. - c. Johnsonite. - d. Mondo Rubber International, Inc. - e. Roppe Corporation, USA. - B. Resilient Base Standard: ASTM F 1861. - 1. Material Requirement: Type TS (rubber, vulcanized thermoset). - 2. Manufacturing Method: Group I (solid, homogeneous). - 3. Style: Cove (base with toe). - C. Minimum Thickness: 0.080 inch (2.0 mm). - D. Height: 4 inches (102 mm). - E. Lengths: Coils in manufacturer's standard length. - F. Outside Corners: Preformed. - G. Inside Corners: Job formed coped. - H. Finish: As selected by Architect from manufacturer's full range. - I. Colors and Patterns: As selected by Architect from full range of industry colors #### 2.2 RESILIENT MOLDING ACCESSORY - A. Resilient Molding Accessory: - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. Burke Mercer Flooring Products; Division of Burke Industries, Inc. - b. Flexco, Inc. - c. Johnsonite. - d. R.C.A. Rubber Company (The). - e. Roppe Corporation, USA. - B. Description: Including but not limited to one or more of the followng Carpet bar for tackless installations; Carpet edge for glue-down applications; Reducer strip for resilient floor covering; Joiner for tile and carpet; Transition strips. - C. Material: Rubber. - D. Profile and Dimensions: As selected by Architect from manufacturer's full line. - E. Colors and Patterns: As selected by Architect from full range of industry colors. ### 2.3 INSTALLATION MATERIALS - A. Trowelable Leveling and Patching Compounds: Latex-modified, portland cement based or blended hydraulic-cement-based formulation provided or approved by manufacturer for applications indicated. - B. Adhesives: Water-resistant type recommended by manufacturer to suit resilient products and substrate conditions indicated. - Use adhesives that comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24): - a. Cove Base Adhesives: Not more than 50 g/L. - C. Floor Polish: Provide protective liquid floor polish products as recommended by resilient stair tread manufacturer. #### PART 3 - EXECUTION #### 3.1 EXAMINATION - A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work. - B. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of resilient products. - C. Proceed with installation only after unsatisfactory conditions have been corrected. ### 3.2 PREPARATION - A. Prepare substrates according to manufacturer's written instructions to ensure adhesion of resilient products. - B. Concrete Substrates for Resilient Accessories: Prepare according to ASTM F 710. - 1. Verify that substrates are dry and free of curing compounds, sealers, and hardeners. - Remove substrate coatings and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended by manufacturer. Do not use solvents. - 3. Alkalinity and Adhesion Testing: Perform tests recommended by manufacturer. - 4. Moisture Testing: Perform tests recommended by manufacturer and as follows. Proceed with installation only after substrates pass testing. - a. Perform anhydrous calcium chloride test, ASTM F 1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. (1.36 kg of water/92.9 sq. m) in 24 hours. - b. Perform relative humidity test using in situ probes, ASTM F 2170. Proceed with installation only after substrates have maximum 75 percent relative humidity level measurement. - C. Fill cracks, holes, and depressions in
substrates with trowelable leveling and patching compound and remove bumps and ridges to produce a uniform and smooth substrate. - D. Do not install resilient products until they are same temperature as the space where they are to be installed. - 1. Move resilient products and installation materials into spaces where they will be installed at least 48 hours in advance of installation. - E. Sweep and vacuum clean substrates to be covered by resilient products immediately before installation. #### 3.3 RESILIENT BASE INSTALLATION - A. Comply with manufacturer's written instructions for installing resilient base. - B. Apply resilient base to walls, columns, pilasters, casework and cabinets in toe spaces, and other permanent fixtures in rooms and areas where base is required. - C. Install resilient base in lengths as long as practicable without gaps at seams and with tops of adjacent pieces aligned. - D. Tightly adhere resilient base to substrate throughout length of each piece, with base in continuous contact with horizontal and vertical substrates. - E. Do not stretch resilient base during installation. - F. On masonry surfaces or other similar irregular substrates, fill voids along top edge of resilient base with manufacturer's recommended adhesive filler material. - G. Preformed Corners: Install preformed corners before installing straight pieces. - H. Job-Formed Corners: - 1. Inside Corners: Use straight pieces of maximum lengths possible. ### 3.4 RESILIENT ACCESSORY INSTALLATION - A. Comply with manufacturer's written instructions for installing resilient accessories. - B. Resilient Molding Accessories: Butt to adjacent materials and tightly adhere to substrates throughout length of each piece. Install reducer strips at edges of carpet and/or resilient floor covering that would otherwise be exposed. # 3.5 CLEANING AND PROTECTION A. Comply with manufacturer's written instructions for cleaning and protection of resilient products. - B. Perform the following operations immediately after completing resilient product installation: - 1. Remove adhesive and other blemishes from exposed surfaces. - 2. Sweep and vacuum surfaces thoroughly. - 3. Damp-mop surfaces to remove marks and soil. - C. Protect resilient products from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period. - D. Floor Polish: Remove soil, visible adhesive, and surface blemishes from resilient stair treads before applying liquid floor polish. - 1. Apply two coat(s). - E. Cover resilient products until Substantial Completion. END OF SECTION 096513 BLANK PAGE ## SECTION 099113 - EXTERIOR PAINTING ### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY - A. This Section includes surface preparation and the application of paint systems on the following exterior substrates: - 1. Steel. - 2. Galvanized metal. - B. Related Sections include the following: - 1. Division 05 Sections for shop priming of metal substrates with primers specified in this Section. - 2. Division 09 Section "Interior Painting" for surface preparation and the application of paint systems on interior substrates. - 3. Division 09 Section "Staining and Transparent Finishing" for surface preparation and the application of wood stains and transparent finishes on exterior wood substrates. # 1.3 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Samples for Initial Selection: For each type of topcoat product indicated. - C. Samples for Verification: For each type of paint system and each color and gloss of topcoat indicated. - 1. Submit Samples on rigid backing, 8 inches (200 mm) square. - 2. Step coats on Samples to show each coat required for system. - 3. Label each coat of each Sample. - 4. Label each Sample for location and application area. - D. Product List: For each product indicated, include the following: - Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules. - 2. Printout of current "MPI Approved Products List" for each product category specified in Part 2, with the proposed product highlighted. #### 1.4 QUALITY ASSURANCE - A. MPI Standards: - 1. Products: Complying with MPI standards indicated and listed in "MPI Approved Products List." - 2. Preparation and Workmanship: Comply with requirements in "MPI Architectural Painting Specification Manual" for products and paint systems indicated. ## 1.5 DELIVERY, STORAGE, AND HANDLING - A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F (7 deg C). - 1. Maintain containers in clean condition, free of foreign materials and residue. - 2. Remove rags and waste from storage areas daily. ## 1.6 PROJECT CONDITIONS - A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F (10 and 35 deg C). - B. Do not apply paints in snow, rain, fog, or mist; when relative humidity exceeds 85 percent; at temperatures less than 5 deg F (3 deg C) above the dew point; or to damp or wet surfaces. ## 1.7 EXTRA MATERIALS - A. Furnish extra materials described below that are from same production run (batch mix) as materials applied and that are packaged for storage and identified with labels describing contents. - 1. Quantity: Furnish an additional 5 percent, but not less than 1 gal. (3.8 L) of each material and color applied. ### PART 2 - PRODUCTS # 2.1 MANUFACTURERS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Benjamin Moore & Co. - 2. Columbia Paint & Coatings. - 3. Dunn-Edwards Corporation. - 4. Durant Paints Inc. - 5. Duron, Inc. - 6. Envirocoat Technologies Inc. - 7. Frazee Paint. - 8. ICI Paints. - 9. Kelly-Moore Paints. - 10. Kwal-Howells Paint. - 11. PPG Architectural Finishes, Inc. - 12. Sherwin-Williams Company (The). - 13. Spectra-Tone. - 14. Tamms Industries, Inc. - 15. Vista Paint. ### 2.2 PAINT, GENERAL - A. Material Compatibility: - 1. Provide materials for use within each paint system that are compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience. - 2. For each coat in a paint system, provide products recommended in writing by manufacturers of topcoat for use in paint system and on substrate indicated. - B. Colors: As selected by Architect from manufacturer's full range. - C. Special Systems: See special system, including manufacturers and products listed for Steel Substrates in the Exterior Painting Schedule. ## 2.3 PRIMERS/SEALERS - A. Alkali-Resistant Primer: MPI #3. - 1. VOC Content: E Range of E3. - B. Bonding Primer (Water Based): MPI #17. - 1. VOC Content: E Range of E3. - C. Bonding Primer (Solvent Based): MPI #69. - 1. VOC Content: E Range of E3. ### 2.4 METAL PRIMERS - A. Alkyd Anticorrosive Metal Primer: MPI #79. - 1. VOC Content: E Range of E2. - B. Quick-Drying Alkyd Metal Primer: MPI #76. - 1. VOC Content: E Range of E3. - C. Waterborne Galvanized-Metal Primer: MPI #134. - 1. VOC Content: E Range of E3. ## 2.5 EXTERIOR LATEX PAINTS - A. Exterior Latex (Flat): MPI #10 (Gloss Level 1). - 1. VOC Content: E Range of E3. - B. Exterior Latex (Semigloss): MPI #11 (Gloss Level 5). - 1. VOC Content: E Range of E3. - C. Exterior Latex (Gloss): MPI #119 (Gloss Level 6, except minimum gloss of 65 units at 60 deg). - 1. VOC Content: E Range of E3. # 2.6 EXTERIOR ALKYD PAINTS A. Exterior Alkyd Enamel (Flat): MPI #8 (Gloss Level 1). - 1. VOC Content: E Range of E1. - B. Exterior Alkyd Enamel (Semigloss): MPI #94 (Gloss Level 5). - 1. VOC Content: E Range of E2. - C. Exterior Alkyd Enamel (Gloss): MPI #9 (Gloss Level 6). - 1. VOC Content: E Range of E2. ### 2.7 QUICK-DRYING ENAMELS - A. Quick-Drying Enamel (Semigloss): MPI #81 (Gloss Level 5). - VOC Content: E Range of E3. - B. Quick-Drying Enamel (High Gloss): MPI #96 (Gloss Level 7). - 1. VOC Content: E Range of E3. ## PART 3 - EXECUTION ### 3.1 EXAMINATION - A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of work. - B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows: - 1. Concrete: 12 percent. - Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers. - D. Begin coating application only after unsatisfactory conditions have been corrected and surfaces are dry. - 1. Beginning coating application constitutes Contractor's acceptance of substrates and conditions. ### 3.2 PREPARATION - A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and paint systems indicated. - B. Remove plates, machined surfaces, and similar items already in place that are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting. - 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any. - 2. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates. - C. Clean substrates of substances that could impair bond of paints, including dirt, oil, grease, and incompatible paints and encapsulants. - 1. Remove incompatible primers and reprime substrate with compatible primers as required to produce paint systems indicated. -
D. Concrete Substrates: Remove release agents, curing compounds, efflorescence, and chalk. Do not paint surfaces if moisture content or alkalinity of surfaces to be painted exceeds that permitted in manufacturer's written instructions. - E. Steel Substrates: Remove rust and loose mill scale. Clean using methods recommended in writing by paint manufacturer. - F. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal fabricated from coil stock by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints. #### 3.3 APPLICATION - A. Apply paints according to manufacturer's written instructions. - 1. Use applicators and techniques suited for paint and substrate indicated. - 2. Paint surfaces behind movable items same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed items with prime coat only. - B. Tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of same material are to be applied. Tint undercoats to match color of topcoat, but provide sufficient difference in shade of undercoats to distinguish each separate coat. - C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance. - D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks. #### 3.4 FIELD QUALITY CONTROL - A. Testing of Paint Materials: Owner reserves the right to invoke the following procedure at any time and as often as Owner deems necessary during the period when paints are being applied: - Owner will engage the services of a qualified testing agency to sample paint materials being used. Samples of material delivered to Project site will be taken, identified, sealed, and certified in presence of Contractor. - 2. Testing agency will perform tests for compliance of paint materials with product requirements. - 3. Owner may direct Contractor to stop applying paints if test results show materials being used do not comply with product requirements. Contractor shall remove noncomplying-paint materials from Project site, pay for testing, and repaint surfaces painted with rejected materials. Contractor will be required to remove rejected materials from previously painted surfaces if, on repainting with complying materials, the two paints are incompatible. ## 3.5 CLEANING AND PROTECTION - A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site. - B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces. - C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition. - At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces. ### 3.6 EXTERIOR PAINTING SCHEDULE - A. Concrete Substrates, Nontraffic Surfaces: - High-Build Latex System: MPI EXT 3.1L, applied to form dry film thickness of not less than 10 mils (0.25 mm). - a. Prime Coat: As recommended in writing by topcoat manufacturer. - b. Intermediate Coat: As recommended in writing by topcoat manufacturer. - c. Topcoat: High-build latex (exterior). ### B. Steel Substrates: - 1. Painting of exposed exterior steel includes preparation, shop primer, one field-applied undercoat and two field-applied finish coats. - 2. Prep: SSPC SP-10 "near white blast cleaning". - 3. Shop Primer: Inorganic Zinc Coating (3 mils min.) - a. Ameron: Dimetcote 9 Zinc. - b. Sherwin-/Williams: Zinc Clad II - c. Tnemec: Tnemec-Zinc. - d. Valspar: MZ7 13-F-12 - 4. Undercoat: Epoxy Polyamide Undercoat (7 mils min.) - a. Ameron: Amercoat 383 HS. - b. Sherwin-Williams: B67 Series. - c. Tnemec: 161 Series - d. Valspar: 190 HB Epoxy. - 5. Finish Coats (2 coats): Gloss Aliphatic (or Acrylic) Polyurethane (3 mils each coat, min.) - a. Ameron: Amercoat 450 HS. - b. Sherwin-Williams: B65 Series. - c. Tnemec: Endura Shield 74 Series. - d. Valspar: 40 Urethane Enamel. #### C. Galvanized-Metal Substrates: - 1. Alkyd System: MPI EXT 5.3B. - a. Prime Coat: Cementitious galvanized-metal primer. - b. Intermediate Coat: Exterior alkyd enamel matching topcoat. - c. Topcoat: Exterior alkyd enamel (semigloss). ## END OF SECTION 099113 ## SECTION 099123 - INTERIOR PAINTING ### PART 1 - GENERAL ### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY - A. This Section includes surface preparation and the application of paint systems on the following interior substrates: - 1. Steel. - 2. Galvanized metal. - 3. Plywood liner panels - B. Related Sections include the following: - 1. Division 05 Sections for shop priming of metal substrates with primers specified in this Section. - 2. Division 09 Section "Exterior Painting" for surface preparation and the application of paint systems on exterior substrates. ## 1.3 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Samples for Initial Selection: For each type of topcoat product indicated. - C. Samples for Verification: For each type of paint system and in each color and gloss of topcoat indicated. - 1. Submit Samples on rigid backing, 8 inches (200 mm) square. - 2. Step coats on Samples to show each coat required for system. - 3. Label each coat of each Sample. - 4. Label each Sample for location and application area. - D. Product List: For each product indicated, include the following: - 1. Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules. - 2. Printout of current "MPI Approved Products List" for each product category specified in Part 2, with the proposed product highlighted. ### 1.4 QUALITY ASSURANCE ## A. MPI Standards: - 1. Products: Complying with MPI standards indicated and listed in "MPI Approved Products List." - 2. Preparation and Workmanship: Comply with requirements in "MPI Architectural Painting Specification Manual" for products and paint systems indicated. ## 1.5 DELIVERY, STORAGE, AND HANDLING - A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F (7 deg C). - 1. Maintain containers in clean condition, free of foreign materials and residue. - 2. Remove rags and waste from storage areas daily. ## 1.6 PROJECT CONDITIONS - A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F (10 and 35 deg C). - B. Do not apply paints when relative humidity exceeds 85 percent; at temperatures less than 5 deg F (3 deg C) above the dew point; or to damp or wet surfaces. ## 1.7 EXTRA MATERIALS - A. Furnish extra materials described below that are from same production run (batch mix) as materials applied and that are packaged for storage and identified with labels describing contents. - 1. Quantity: Furnish an additional 5 percent, but not less than 1 gal. (3.8 L) of each material and color applied. ### PART 2 - PRODUCTS # 2.1 MANUFACTURERS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Benjamin Moore & Co. - 2. Columbia Paint & Coatings. - 3. Dunn-Edwards Corporation. - 4. Durant Paints Inc. - 5. Duron, Inc. - 6. Envirocoat Technologies Inc. - 7. Frazee Paint. - 8. ICI Paints. - 9. Kelly-Moore Paints. - 10. Kwal-Howells Paint. - 11. PPG Architectural Finishes, Inc. - 12. Sherwin-Williams Company (The). - 13. Spectra-Tone. - 14. Tamms Industries, Inc. - 15. Vista Paint. ### 2.2 PAINT, GENERAL ### A. Material Compatibility: 1. Provide materials for use within each paint system that are compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience. - 2. For each coat in a paint system, provide products recommended in writing by manufacturers of topcoat for use in paint system and on substrate indicated. - B. VOC Content of Field-Applied Interior Paints and Coatings: Provide products that comply with the following limits for VOC content, exclusive of colorants added to a tint base, when calculated according to 40 CFR 59, Subpart D (EPA Method 24); these requirements do not apply to paints and coatings that are applied in a fabrication or finishing shop: - 1. Flat Paints, Coatings, and Primers: VOC content of not more than 50 g/L. - 2. Nonflat Paints, Coatings, and Primers: VOC content of not more than 150 g/L. - 3. Anti-Corrosive and Anti-Rust Paints Applied to Ferrous Metals: VOC not more than 250 g/L. - 4. Floor Coatings: VOC not more than 100 g/L. - 5. Shellacs, Clear: VOC not more than 730 g/L. - 6. Shellacs, Pigmented: VOC not more than 550 g/L. - 7. Flat Topcoat Paints: VOC content of not more than 50 g/L. - 8. Nonflat Topcoat Paints: VOC content of not more than 150 g/L. - Anti-Corrosive and Anti-Rust Paints Applied to Ferrous Metals: VOC not more than 250 g/L. - 10. Floor Coatings: VOC not more than 100 g/L. - 11. Shellacs. Clear: VOC not more than 730 g/L. - 12. Shellacs, Pigmented: VOC not more than 550 g/L. - 13. Primers, Sealers, and Undercoaters: VOC content of not more than 200 g/L. - 14. Dry-Fog Coatings: VOC content of not more than 400 g/L. - 15. Zinc-Rich Industrial Maintenance Primers: VOC content of not more than 340 g/L. - 16. Pre-Treatment Wash Primers: VOC content of not more than 420 g/L. - C. Chemical Components of
Field-Applied Interior Paints and Coatings: Provide topcoat paints and anti-corrosive and anti-rust paints applied to ferrous metals that comply with the following chemical restrictions; these requirements do not apply to paints and coatings that are applied in a fabrication or finishing shop: - 1. Aromatic Compounds: Paints and coatings shall not contain more than 1.0 percent by weight of total aromatic compounds (hydrocarbon compounds containing one or more benzene rings). - 2. Restricted Components: Paints and coatings shall not contain any of the following: - a. Acrolein. - b. Acrylonitrile. - c. Antimony. - d. Benzene. - e. Butyl benzyl phthalate. - f. Cadmium. - g. Di (2-ethylhexyl) phthalate. - h. Di-n-butvl phthalate. - i. Di-n-octvl phthalate. - j. 1,2-dichlorobenzene. - k. Diethyl phthalate. - I. Dimethyl phthalate. - m. Ethylbenzene. - n. Formaldehyde. - o. Hexavalent chromium. - p. Isophorone. - q. Lead. - r. Mercury. - s. Methyl ethyl ketone. - t. Methyl isobutyl ketone. - u. Methylene chloride. - v. Naphthalene. - w. Toluene (methylbenzene). - x. 1,1,1-trichloroethane. - y. Vinyl chloride. - D. Colors: As selected by Architect from manufacturer's full range. ## 2.3 PRIMERS/SEALERS - A. Interior Latex Primer/Sealer: MPI #50. - 1. VOC Content: E Range of E3. - B. Interior Alkyd Primer/Sealer: MPI #45. - 1. VOC Content: E Range of E2. - C. Wood-Knot Sealer: Sealer recommended in writing by topcoat manufacturer for use in paint systems indicated. ## 2.4 WOOD PRIMERS - A. Interior Latex-Based Wood Primer: MPI #39. - 1. VOC Content: E Range of E2. ## 2.5 METAL PRIMERS - A. Quick-Drying Alkyd Metal Primer: MPI #76. - 1. VOC Content: E Range of E3. - B. Rust-Inhibitive Primer (Water Based): MPI #107. - 1. VOC Content: E Range of E3. - C. Waterborne Galvanized-Metal Primer: MPI #134. - 1. VOC Content: E Range of E3. ### 2.6 LATEX PAINTS - A. Interior Latex (Flat): MPI #53 (Gloss Level 1). - 1. VOC Content: E Range of E3. - B. Interior Latex (Low Sheen): MPI #44 (Gloss Level 2). - 1. VOC Content: E Range of E3. - C. Interior Latex (Eggshell): MPI #52 (Gloss Level 3). - 1. VOC Content: E Range of E3. - D. Interior Latex (Satin): MPI #43 (Gloss Level 4). - 1. VOC Content: E Range of E3. - E. Interior Latex (Semigloss): MPI #54 (Gloss Level 5). - 1. VOC Content: E Range of E3. - F. Interior Latex (Gloss): MPI #114 (Gloss Level 6, except minimum gloss of 65 units at 60 deg). - 1. VOC Content: E Range of E3. ## 2.7 ALKYD PAINTS - A. Interior Alkyd (Flat): MPI #49 (Gloss Level 1). - 1. VOC Content: E Range of E3. - B. Interior Alkyd (Eggshell): MPI #51 (Gloss Level 3). - 1. VOC Content: E Range of E2. - C. Interior Alkyd (Semigloss): MPI #47 (Gloss Level 5). - 1. VOC Content: E Range of E2. - D. Interior Alkyd (Gloss): MPI #48 (Gloss Level 6). - 1. VOC Content: E Range of E2. # 2.8 QUICK-DRYING ENAMELS - A. Quick-Drying Enamel (Semigloss): MPI #81 (Gloss Level 5). - 1. VOC Content: E Range of E3. - B. Quick-Drying Enamel (High Gloss): MPI #96 (Gloss Level 7). - 1. VOC Content: E Range of E3. ### 2.9 FLOOR COATINGS - A. Interior/Exterior Clear Concrete Floor Sealer (Water Based): MPI #99. - 1. VOC Content: E Range of E3. # PART 3 - EXECUTION # 3.1 EXAMINATION - A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of work. - B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows: - 1. Concrete: 12 percent. - 2. Wood: 15 percent. - 3. Gypsum Board: 12 percent. - C. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers. - D. Begin coating application only after unsatisfactory conditions have been corrected and surfaces are dry. - 1. Beginning coating application constitutes Contractor's acceptance of substrates and conditions. ### 3.2 PREPARATION - A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates indicated. - B. Remove plates, machined surfaces, and similar items already in place that are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting. - 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any. - 2. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates. - C. Clean substrates of substances that could impair bond of paints, including dirt, oil, grease, and incompatible paints and encapsulants. - 1. Remove incompatible primers and reprime substrate with compatible primers as required to produce paint systems indicated. - D. Concrete Substrates: Remove release agents, curing compounds, efflorescence, and chalk. Do not paint surfaces if moisture content or alkalinity of surfaces to be painted exceeds that permitted in manufacturer's written instructions. - E. Steel Substrates: Remove rust and loose mill scale. Clean using methods recommended in writing by paint manufacturer. - F. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal fabricated from coil stock by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints. ### G. Wood Substrates: - 1. Scrape and clean knots, and apply coat of knot sealer before applying primer. - 2. Sand surfaces that will be exposed to view, and dust off. - 3. Prime edges, ends, faces, undersides, and backsides of wood. - 4. After priming, fill holes and imperfections in the finish surfaces with putty or plastic wood filler. Sand smooth when dried. ## 3.3 APPLICATION - A. Apply paints according to manufacturer's written instructions. - 1. Use applicators and techniques suited for paint and substrate indicated. - Paint surfaces behind movable equipment and furniture same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed equipment or furniture with prime coat only. - 3. Paint front and backsides of access panels, removable or hinged covers, and similar hinged items to match exposed surfaces. - B. Tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of same material are to be applied. Tint undercoats to match color of topcoat, but provide sufficient difference in shade of undercoats to distinguish each separate coat. - C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance. - D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks. - E. Painting Mechanical and Electrical Work: Paint items exposed in equipment rooms and occupied spaces including, but not limited to, the following: #### Mechanical Work: - a. Uninsulated metal piping. - b. Uninsulated plastic piping. - c. Pipe hangers and supports. - d. Tanks that do not have factory-applied final finishes. - Visible portions of internal surfaces of metal ducts, without liner, behind air inlets and outlets. - f. Duct, equipment, and pipe insulation having cotton or canvas insulation covering or other paintable jacket material. - g. Mechanical equipment that is indicated to have a factory-primed finish for field painting. ### 2. Electrical Work: - a. Switchgear. - b. Panelboards. - c. Electrical equipment that is indicated to have a factory-primed finish for field painting. ## 3.4 FIELD QUALITY CONTROL - A. Testing of Paint Materials: Owner reserves the right to invoke the following procedure at any time and as often as Owner deems necessary during the period when paints are being applied: - Owner will engage the services of a qualified testing agency to sample paint materials being used. Samples of material delivered to Project site will be taken, identified, sealed, and certified in presence of Contractor. - 2. Testing agency will perform tests for compliance with product requirements. - 3. Owner may direct Contractor to stop applying paints if test results show materials being used do not comply with product requirements. Contractor shall remove noncomplying-paint materials from Project site, pay for testing, and repaint surfaces painted with rejected materials. Contractor will be required to remove rejected materials from previously painted surfaces if, on repainting with complying materials, the two paints are incompatible. ### 3.5 CLEANING AND PROTECTION - A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site. - B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces. - C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces. ### 3.6 INTERIOR PAINTING SCHEDULE - A. Concrete Substrates, Nontraffic Surfaces: - 1. High-Performance Architectural Latex System: MPI INT 3.1C. - a. Prime Coat: Interior latex primer/sealer. - b. Intermediate Coat: High-performance architectural latex matching topcoat. - c. Topcoat: High-performance architectural latex (eggshell). - B. Steel Substrates: - 1. Water-Based Dry-Fall System: MPI INT 5.1C. - a. Prime Coat: Quick-drying alkyd metal primer. - b. Topcoat: Waterborne dry fall. - C. Galvanized-Metal Substrates: - 1.
Water-Based Dry-Fall System: MPI INT 5.3H. - a. Prime Coat: Waterborne dry fall. - b. Topcoat: Waterborne dry fall. - D. Wood Panel Substrates: Including painted plywood, medium-density fiberboard, and hardboard. - 1. Latex System: MPI INT 6.4R. - a. Prime Coat: Interior latex-based wood primer. - b. Intermediate Coat: Interior latex matching topcoat. - c. Topcoat: Interior latex (semigloss). END OF SECTION 099123 ## SECTION 099600 - HIGH-PERFORMANCE COATINGS #### PART 1 - GENERAL ### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY - A. This Section includes surface preparation and application of high-performance coating systems on the following substrates: - 1. Interior Substrates: - a. Concrete, horizontal surfaces. - B. Related Sections include the following: - 1. Division 09 painting Sections for special-use coatings and general field painting. - C. This work is specified as an "alternate". See Division 01 Section "Alternates". ### 1.3 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Samples for Initial Selection: For each type of finish-coat product indicated. - C. Samples for Verification: For each type of coating system and in each color and gloss of finish coat indicated. - 1. Submit Samples on rigid backing, 8 inches (200 mm) square. - 2. Step coats on Samples to show each coat required for system. - 3. Label each coat of each Sample. - 4. Label each Sample for location and application area. - D. Product List: For each product indicated. Cross-reference products to coating system and locations of application areas. Use same designations indicated on Drawings and in schedules. ### 1.4 QUALITY ASSURANCE - A. Master Painters Institute (MPI) Standards: - 1. Products: Complying with MPI standards indicated and listed in "MPI Approved Products List." - 2. Preparation and Workmanship: Comply with requirements in "MPI Architectural Painting Specification Manual" for products and coating systems indicated. ## 1.5 DELIVERY, STORAGE, AND HANDLING - A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F (7 deg C). - 1. Maintain containers in clean condition, free of foreign materials and residue. - 2. Remove rags and waste from storage areas daily. # 1.6 PROJECT CONDITIONS - A. Apply coatings only when temperature of surfaces to be coated and surrounding air temperatures are between 50 and 95 deg F (10 and 35 deg C). - B. Do not apply coatings in snow, rain, fog, or mist; when relative humidity exceeds 85 percent; at temperatures less than 5 deg F (3 deg C) above the dew point; or to damp or wet surfaces. ## 1.7 EXTRA MATERIALS - A. Furnish extra materials described below that are from same production run (batch mix) as materials applied and that are packaged for storage and identified with labels describing contents. - 1. Quantity: Furnish an additional 5 percent, but not less than 1 gal. (3.8 L) of each material and color applied. ### PART 2 - PRODUCTS # 2.1 HIGH-PERFORMANCE COATINGS, GENERAL - A. Material Compatibility: - 1. Provide materials for use within each coating system that are compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience. - 2. Provide products of same manufacturer for each coat in a coating system. - B. VOC Content of Field-Applied Interior Paints and Coatings: Provide products that comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24): - 1. Flat Paints, Coatings, and Primers: VOC content of not more than 50 g/L. - 2. Nonflat Paints. Coatings, and Primers: VOC content of not more than 150 g/L. - 3. Anticorrosive and Anti-Rust Paints Applied to Ferrous Metals: VOC content of not more than 250 g/l. - 4. Clear Wood Finishes, Varnishes: VOC not more than 350 g/L. - 5. Clear Wood Finishes, Lacquers: VOC not more than 550 g/L. - 6. Floor Coatings: VOC not more than 100 g/L. - 7. Shellacs, Clear: VOC not more than 730 g/L. - 8. Shellacs, Pigmented: VOC not more than 550 g/L. - 9. Stains: VOC content of not more than 250 g/L. - 10. Flat Interior Topcoat Paints: VOC content of not more than 50 g/L. - 11. Nonflat Interior Topcoat Paints: VOC content of not more than 150 g/L. - 12. Anti-Corrosive and Anti-Rust Paints Applied to Ferrous Metals: VOC not more than 250 g/L. - 13. Clear Wood Finishes, Varnishes: VOC not more than 350 g/L. - 14. Clear Wood Finishes, Lacquers: VOC not more than 550 g/L. - 15. Floor Coatings: VOC not more than 100 g/L. - 16. Shellacs, Clear: VOC not more than 730 g/L. - 17. Shellacs, Pigmented: VOC not more than 550 g/L. - 18. Stains: VOC not more than 250 g/L. - 19. Primers, Sealers, and Undercoaters: VOC content of not more than 200 g/L. - 20. Zinc-Rich Industrial Maintenance Primers: VOC content of not more than 340 g/L. - 21. Pre-Treatment Wash Primers: VOC content of not more than 420 g/L. - C. Chemical Components of Field-Applied Interior Paints and Coatings: Provide topcoat paints and anti-corrosive and anti-rust paints applied to ferrous metals that comply with the following chemical restrictions; these requirements do not apply to paints and coatings that are applied in a fabrication or finishing shop: - 1. Aromatic Compounds: Paints and coatings shall not contain more than 1.0 percent by weight of total aromatic compounds (hydrocarbon compounds containing 1 or more benzene rings). - 2. Restricted Components: Paints and coatings shall not contain any of the following: - a. Acrolein. - b. Acrylonitrile. - c. Antimony. - d. Benzene. - e. Butyl benzyl phthalate. - f. Cadmium. - g. Di (2-ethylhexyl) phthalate. - h. Di-n-butyl phthalate. - i. Di-n-octyl phthalate. - j. 1,2-dichlorobenzene. - k. Diethyl phthalate. - I. Dimethyl phthalate. - m. Ethylbenzene. - n. Formaldehyde. - o. Hexavalent chromium. - p. Isophorone. - q. Lead. - r. Mercury. - s. Methyl ethyl ketone. - t. Methyl isobutyl ketone. - u. Methylene chloride. - v. Naphthalene. - w. Toluene (methylbenzene). - x. 1,1,1-trichloroethane. - y. Vinyl chloride. - D. Colors: As selected by Architect from manufacturer's full range. - 2.2 WATER-BASED EPOXY FLOOR PAINT: MPI #93. - A. Products: Subject to compliance with requirements, provide one of the following: - 1. Benjamin Moore & Co.; Industrial, Acrylic Epoxy Gloss Coating, M4303. - 2. BLP Mobile Paint Manufacturing Company, Inc.; MoPoxY H2O-200; Waterborne Epoxy -White, 69-AW-6. - 3. Columbia Paint & Coatings; Sierra Performance, Concrete Enamel, S40. - 4. Coronado Paint; Industrial, Amine Adduct Water Based Epoxy, 142 Series. - 5. Frazee Paint; Ameron, Amercoat 335. - 6. General Paint, Amercoat; Waterborne Epoxy Acrylic, 335. - 7. Griggs Paint; Hydropox #2 Waterborne 2-Comp. Epoxy. - 8. ICI Paints; Devoe Coatings, Tru-Glaze WB Semi-Gloss Epoxy, 4406. - 9. Insl-x; AllPro, Pro Water Based Epoxy, AP4300-12231. - 10. Miller Paint; PPG Aquapon Water Base Epoxy, 98-1 Series. - 11. Parker Paint Mfg. Co. Inc.; Ameron, Amercoat 335, 335. - 12. Porter Paints; Dura-Glaze, Waterborne Gloss Epoxy, 9371. - 13. PPG Architectural Finishes, Inc.; Aquapon, Water Base Epoxy, 98-1 Series. - 14. Smiland Paint Company; Morwear, Floor & Patio Paint, 1400. - 15. Spectra-Tone; Insl-x Aqua-Tile W.B. Epoxy, AT-A100. - 16. Vista Paint; Rust-Oleum, W/B Epoxy Floor Coating, 6000 Series. - B. Environmental Characteristics: - 1. VOC Content: - Minimum E Range of E2. ### PART 3 - EXECUTION #### 3.1 EXAMINATION - A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of work. - Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows: - a. Concrete: 12 percent. - Verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers. - Begin coating application only after unsatisfactory conditions have been corrected and surfaces are dry. - 4. Coating application indicates acceptance of surfaces and conditions. ### 3.2 PREPARATION - A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates indicated. - B. Remove plates, machined surfaces, and similar items already in place that are not to be coated. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and coating. - After completing coating operations, reinstall items that were removed; use workers skilled in the trades involved. - C. Clean substrates of substances that could impair bond of coatings, including dirt, oil, grease, and incompatible paints and encapsulants. - 1. Remove incompatible primers and reprime substrate with compatible primers as required to produce coating systems indicated. - D. Concrete Substrates: Remove release agents, curing compounds, efflorescence, and chalk. Do not coat surfaces if moisture content or alkalinity of surfaces to be coated exceeds that permitted in manufacturer's written instructions. - Clean surfaces with pressurized water. Use pressure range of 1500 to 4000 psi (10 350 to 27 580 kPa) at 6 to 12 inches (150 to 300 mm). - 2. Abrasive blast clean surfaces to comply with SSPC-SP 7/NACE No. 4, "Brush-Off Blast Cleaning." #### 3.3 APPLICATION A. Apply high-performance coatings according to manufacturer's written instructions. - 1. Use applicators and techniques suited for coating and substrate indicated. - Coat surfaces behind movable equipment and furniture same as similar exposed surfaces. Before final installation, coat surfaces behind permanently fixed equipment or furniture with prime coat
only. - B. Tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of the same material are to be applied. Tint undercoats to match color of finish coat, but provide sufficient difference in shade of undercoats to distinguish each separate coat. - C. If undercoats or other conditions show through final coat, apply additional coats until cured film has a uniform coating finish, color, and appearance. - D. Apply coatings to produce surface films without cloudiness, spotting, holidays, laps, brush marks, runs, sags, ropiness, or other surface imperfections. Produce sharp glass lines and color breaks. #### 3.4 FIELD QUALITY CONTROL - A. Owner reserves the right to invoke the following procedure at any time and as often as Owner deems necessary during the period when coatings are being applied: - Owner will engage the services of a qualified testing agency to sample coating material being used. Samples of material delivered to Project site will be taken, identified, sealed, and certified in presence of Contractor. - 2. Testing agency will perform tests for compliance with specified requirements. - Owner may direct Contractor to stop applying coatings if test results show materials being used do not comply with specified requirements. Contractor shall remove noncomplying coating materials from Project site, pay for testing, and recoat surfaces coated with rejected materials. Contractor will be required to remove rejected materials from previously coated surfaces if, on recoating with complying materials, the two coatings are incompatible. ## 3.5 CLEANING AND PROTECTION - A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site. - B. After completing coating application, clean spattered surfaces. Remove spattered coatings by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces. - C. Protect work of other trades against damage from coating operation. Correct damage by cleaning, repairing, replacing, and recoating, as approved by Architect, and leave in an undamaged condition. - At completion of construction activities of other trades, touch up and restore damaged or defaced coated surfaces. ### 3.6 INTERIOR HIGH-PERFORMANCE COATING SCHEDULE - A. Concrete Substrates, Horizontal Surfaces. - Water-Based Epoxy Floor Paint Coating System. - a. Prime Coat: Water-based epoxy floor paint, MPI #93. - b. Intermediate Coat: Water-based epoxy floor paint, MPI #93. - c. Topcoat: Water-based epoxy floor paint, MPI #93. END OF SECTION 099600 BLANK PAGE ## SECTION 133419 - METAL BUILDING SYSTEMS ### PART 1 - GENERAL ### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY - A. This Section includes metal building systems that consist of integrated sets of mutually dependent components including structural framing, roof panels, wall panels, soffit panels, doors, windows and accessories. - B. Related Sections include the following: - Division 03 Section "Cast-in-Place Concrete" for concrete foundations, slabs, and anchor-bolt installation. - 2. Division 07 Section "Thermal Insulation" for insulation installed in metal roof and wall panel assemblies. - 3. Division 07 Section "Metal Roof Panels" for factory-formed metal roof panels. - 4. Division 07 Section "Metal Wall Panels" for factory-formed metal wall panels. - 5. Division 08 Section "Hollow Metal Doors and Frames." - 6. Division 08 Section "Overhead Coiling Doors." - 7. Division 08 Section "Door Hardware" for hardware to the extent not specified in this Section. - 8. Division 09 painting Sections for finish painting of shop-primed structural framing. - 9. Division 09 Section "Gypsum Board" for installing gypsum board as part of metal panel assemblies. # 1.3 DEFINITIONS - A. Bay: Dimension between main frames measured normal to frame (at centerline of frame) for interior bays, and dimension from centerline of first interior main frame measured normal to end wall (outside face of end-wall girt) for end bays. Also see note on dimensions in paragraph 1.4.B, below. - B. Building Length: Dimension of the building measured perpendicular to main framing from end wall to end wall (outside face of girt to outside face of girt). Also see note on dimensions in paragraph 1.4.B, below. - C. Building Width: Dimension of the building measured parallel to main framing from sidewall to sidewall (outside face of girt to outside face of girt). Also see note on dimensions in paragraph 1.4.B, below. - D. Clear Span: Distance between supports of beams, girders, or trusses (measured from lowest level of connecting area of a column and a rafter frame or knee). - E. Eave Height: Vertical dimension from finished floor to eave (the line along the sidewall formed by intersection of the planes of the roof and wall). - F. Clear Height under Structure: Vertical dimension from finished floor to lowest point of any part of primary or secondary structure, not including crane supports, located within clear span. - G. Terminology Standard: Refer to MBMA's "Metal Building Systems Manual" for definitions of terms for metal building system construction not otherwise defined in this Section or in referenced standards. ### 1.4 SYSTEM DESCRIPTION - A. General: Provide a complete, integrated set of metal building system manufacturer's standard mutually dependent components and assemblies that form a metal building system capable of withstanding structural and other loads, thermally induced movement, and exposure to weather without failure or infiltration of water into building interior. Include primary and secondary framing, metal roof panels, metal wall panels, and accessories complying with requirements indicated. - 1. Provide metal building system of size and with spacings, slopes, and spans indicated. - 2. Horizontal dimensions as indicated on Drawings, with bay spacing coordinated to accommodate layout as shown on Drawings. - 3. Provide personnel doors and overhead doors in locations indicated in drawings. - a. Personnel doors to be 36 inches by 84 inches, with complete hardware package, including hinges, latch and lock, frame, and all other components required for a complete and operable installation. - b. Overhead doors to be sizes as indicated on Drawings, with complete hardware package, including all components required for a complete and operable installation. - B. Note on dimensions as used in this project: Primary dimensions have been given in drawings from grid-to-grid and from outside-face-of-frame to outside-face-of-frame, independent of girt dimensions. Purpose of this is to clearly communicate to Owner and Users the dimensional characteristics of their facility. Wind girt dimensions are assumed to be 8 inches for the purposes of this design. Verify and coordinate actual dimensions with building manufacturer prior to finalizing layout for footings, foundation walls, and other components. - C. Primary Frame Type: - 1. Rigid Clear Span: Solid-member, structural-framing system without interior columns. - D. End-Wall Framing: Future expandabilty is not anticipated. Engineer end walls with manufacturer's standard end wall system. - E. Secondary Frame Type: Manufacturer's standard purlins and joists and exterior-framed girts. - 1. Basis of design depth for girts and purlins is assumed to be 8 inches. Coordinate and provide any required modifications to design so as to accommodate other depths and/or configurations, including coordination of foundation wall width(s). - F. Clear Interior Height: As required to provide clearance at crane arc. 21 feet is basis of design, but a lower interior height is acceptable if crane clearance met. - G. Bay Spacing: Approximately 25 feet (7.6 m). - H. Roof Slope: 2-1/2 inches per 12 inches. - I. Roof System: Manufacturer's standard vertical-rib, standing-seam or trapezoidal-rib standing-seam metal roof panels. - 1. Coordinate for installation of snow guards/fences as indicated on Drawings. - J. Exterior Wall System: Manufacturer's standard field-assembled, uninsulated metal wall panels. ### 1.5 SYSTEM PERFORMANCE REQUIREMENTS A. Structural Performance: Provide metal building systems capable of withstanding the effects of gravity loads and the following loads and stresses within limits and under conditions indicated: - Engineer metal building systems according to procedures in MBMA's "Metal Building Systems Manual." - 2. Design Loads: As verified by Contractor. - 3. Design secondary framing system to accommodate deflection of primary building structure and construction tolerances, and to maintain clearances at openings. - 4. Provide metal panel assemblies capable of withstanding the effects of loads and stresses indicated, based on testing according to ASTM E 1592. - B. Seismic Performance: Design and engineer metal building systems capable of withstanding the effects of earthquake motions determined according to ASCE 7, "Minimum Design Loads for Buildings and Other Structures": Section 9, "Earthquake Loads." - C. Thermal Movements: Provide metal panel systems that allow for thermal movements resulting from the following maximum change (range) in ambient and surface temperatures by preventing buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base engineering calculation on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss. - 1. Temperature Change (Range): 140 deg F, ambient; 180 deg F, material surfaces. ### 1.6 SUBMITTALS - A. Product Data: Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type of the following metal building system components: - 1. Structural-framing system. - 2. Metal roof panels. - 3.
Metal wall panels. - 4. Insulation and vapor retarders. - 5. Flashing and trim. - 6. Doors. - 7. Accessories. - B. Shop Drawings: For the following metal building system components. Include plans, elevations, sections, details, and attachments to other work. - 1. For installed products indicated to comply with design loads, include structural analysis data signed and sealed by the qualified professional engineer responsible for their preparation. - Footing and Foundation Plan and Details: Footing and Foundation Plans have been prepared using assumed loads and reactions. Prior to commencing construction of footings and foundations, verify that assumed loads are within those imposed by Manufacturer's building design. Do not commence construction of footings or foundations if any loads or reactions exceed those used in design, and notify Architect immediately. - 3. Anchor-Bolt Plans: Submit anchor-bolt plans before foundation work begins. Include location, diameter, and projection of anchor bolts required to attach metal building to foundation. Indicate column reactions at each location. - 4. Structural-Framing Drawings: Show complete fabrication of primary and secondary framing; include provisions for openings. Indicate welds and bolted connections, distinguishing between shop and field applications. Include transverse cross-sections. - Metal Roof and Wall Panel Layout Drawings: Show layouts of metal panels including methods of support. Include details of edge conditions, joints, panel profiles, corners, anchorages, trim, flashings, closures, and special details. Distinguish between factory and field-assembled work; show locations of exposed fasteners. - a. Show roof-mounted items including roof hatches, equipment supports, pipe supports and penetrations, lighting fixtures, snow guards, and items mounted on roof curbs. - b. Show wall-mounted items including doors, windows, louvers, and lighting fixtures. - c. Show translucent panels. - 6. Building structural design must be reviewed and approved for construction by the Building Official. Provide all drawings and calculations, including engineers' stamps, required for this review and approval. Coordinate final engineering with Architect. Provide responses and corrections as required to meet Building Official's requirements. - C. Samples for Initial Selection: For each type of building component with factory-applied color finish. - D. Samples for Verification: For each type of exposed finish required, prepared on Samples of sizes indicated below. - 1. Metal Roof and Wall Panels: Nominal 12 inches (300 mm) long by actual panel width. Include fasteners, closures, and other exposed panel accessories. - 2. Translucent Panels: Nominal 12 inches (300 mm) long by actual panel width. - 3. Flashing and Trim: Nominal 12 inches (300 mm) long. Include fasteners and other exposed accessories. - 4. Vapor Retarders: Nominal 6-inch- (150-mm-) square Samples. - 5. Accessories: Nominal 12-inch- (300-mm-) long Samples for each type of accessory. - E. Product Certificates: For each type of metal building system, signed by product manufacturer. - 1. Letter of Design Certification: Signed and sealed by a qualified professional engineer. Include the following: - a. Name and location of Project. - b. Order number. - c. Name of manufacturer. - d. Name of Contractor. - e. Building dimensions including width, length, height, and roof slope. - Indicate compliance with AISC standards for hot-rolled steel and AISI standards for coldrolled steel, including edition dates of each standard. - g. Governing building code and year of edition. - h. Design Loads: Include dead load, roof live load, collateral loads, roof snow load, deflection, wind loads/speeds and exposure, seismic design category or effective peak velocity-related acceleration/peak acceleration, and auxiliary loads (cranes). - i. Load Combinations: Indicate that loads were applied acting simultaneously with concentrated loads, according to governing building code. - Building-Use Category: Indicate category of building use and its effect on load importance factors. - k. AISC Certification for Category MB: Include statement that metal building system and components were designed and produced in an AISC-Certified Facility by an AISC-Certified Manufacturer. - F. Welding certificates. - G. Erector Certificate: Signed by manufacturer certifying that erector complies with requirements. - H. Manufacturer Certificate: Signed by manufacturer certifying that products comply with requirements. - I. Qualification Data: For manufacturer and professional engineer. - J. Material Test Reports: Signed by manufacturers certifying that the following products comply with requirements: - 1. Structural steel including chemical and physical properties. - 2. Bolts, nuts, and washers including mechanical properties and chemical analysis. - 3. Tension-control, high-strength, bolt-nut-washer assemblies. - 4. Shop primers. - 5. Nonshrink grout. - K. Field quality-control test reports. - L. Product Test Reports: Based on evaluation of comprehensive tests performed by manufacturer and witnessed by a qualified testing agency, for insulation and vapor retarders. Include reports for thermal resistance, fire-test-response characteristics, water-vapor transmission, and water absorption. - M. Maintenance Data: For metal panel finishes and door hardware to include in maintenance manuals. - N. Warranties: Special warranties specified in this Section. - O. Other Action Submittals: - Door Schedule: For doors and frames. Use same designations indicated on Drawings. Include details of reinforcement. - Door Hardware Schedule: Include details of fabrication and assembly of door hardware. Organize schedule into door hardware sets indicating complete designations of every item required for each door or opening. - b. Keying Schedule: Detail Owner's final keying instructions for locks. Include schematic keying diagram and index each key set to unique door designations. ### 1.7 QUALITY ASSURANCE - A. Erector Qualifications: An experienced erector who has specialized in erecting and installing work similar in material, design, and extent to that indicated for this Project and who is acceptable to manufacturer. - B. Manufacturer Qualifications: A qualified manufacturer and member of MBMA, which is either listed as an approved fabricator by the State of Utah (see http://dfcm.utah.gov/downloads/bldg_official/approved_fabricator_list_08.pdf), or can provide an ICC Research Report for that manufacturer's products. Report must be received and approved prior to bid in order to qualify. Allow not less than one week for approval. - AISC Certification for Category MB: An AISC-Certified Manufacturer that designs and produces metal building systems and components in an AISC-Certified Facility. - 2. Engineering Responsibility: Preparation of Shop Drawings and comprehensive engineering analysis by a qualified professional engineer. - C. Testing Agency Qualifications: An independent agency qualified according to ASTM E 329 for testing indicated, as documented according to ASTM E 548. - D. Source Limitations: Obtain primary metal building system components, including structural framing and metal panel assemblies, through one source from a single manufacturer. - E. Product Options: Drawings indicate size, profiles, and dimensional requirements of metal building system and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements." - Do not modify intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If modifications are proposed, submit comprehensive explanatory data to Architect for review. - F. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code--Steel," and AWS D1.3, "Structural Welding Code--Sheet Steel." - G. Structural Steel: Comply with AISC's "Specification for Structural Steel Buildings--Allowable Stress Design, Plastic Design," or AISC's "Load and Resistance Factor Design Specification for Structural Steel Buildings," for design requirements and allowable stresses. - H. Cold-Formed Steel: Comply with AISI's "Specification for the Design of Cold-Formed Steel Structural Members," or AISI's "Load and Resistance Factor Design Specification for Steel Structural Members," for design requirements and allowable stresses. - I. Fire-Resistance Ratings: Where indicated, provide metal panel assemblies identical to those of assemblies tested for fire resistance per ASTM E 119 by a testing and inspecting agency acceptable to authorities having jurisdiction. - 1. Combustion Characteristics: ASTM E 136. - 2. Fire-Resistance Ratings: Indicated by design designations from UL's "Fire Resistance Directory" or from the listings of another testing and inspecting agency. - 3. Metal panels shall be identified with appropriate markings of applicable testing and inspecting agency. - J. Surface-Burning Characteristics: Provide field-insulated metal panels having thermal insulation and vaporretarder-facing materials with the following surface-burning characteristics as determined by testing identical products per ASTM E 84 by UL or another testing and inspecting agency acceptable to authorities having jurisdiction: - 1. Flame-Spread Index: 25 or less, unless otherwise indicated. - 2. Smoke-Developed Index: 450 or less, unless otherwise indicated. - K. Pre-Erection Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination." Review methods and procedures related to metal building systems including, but not limited to, the following: - 1. Inspect and discuss condition of foundations and other preparatory work performed by other trades. - 2. Review structural load limitations. - 3. Review and finalize construction schedule and verify
availability of materials, Erector's personnel, equipment, and facilities needed to make progress and avoid delays. - 4. Review required testing, inspecting, and certifying procedures. - 5. Review weather and forecasted weather conditions and procedures for unfavorable conditions. - L. Pre-installation Wall and Roof Assembly Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination." Review methods and procedures related to metal roof panel assemblies including, but not limited to, the following: - 1. Examine purlin and rafter conditions for compliance with requirements, including flatness and attachment to structural members. Examine support conditions for compliance with requirements, including alignment between and attachment to structural members. - 2. Review structural limitations of purlins and rafters during and after roofing. Review structural limitations of girts and columns during and after wall panel installation. - 3. Review flashings, special roof details, roof drainage, roof penetrations, equipment curbs, and condition of other construction that will affect metal roof panels. Review flashings, special siding details, wall penetrations, openings, and condition of other construction that will affect metal wall panels. - 4. Review temporary protection requirements for metal roof panel and metal wall panel assemblies during and after installation. - 5. Review roof observation and repair procedures after metal roof panel installation. Review wall observation and repair procedures after metal wall panel installation. ## 1.8 DELIVERY, STORAGE, AND HANDLING - A. Deliver components, sheets, panels, and other manufactured items so as not to be damaged or deformed. Package metal panels for protection during transportation and handling. - B. Unload, store, and erect metal panels in a manner to prevent bending, warping, twisting, and surface damage. - C. Stack metal panels horizontally on platforms or pallets, covered with suitable weathertight and ventilated covering. Store metal panels to ensure dryness and with positive slope for drainage of water. Do not store metal panels in contact with other materials that might cause staining, denting, or other surface damage. - D. Protect foam-plastic insulation as follows: - 1. Do not expose to sunlight, except to extent necessary for period of installation and concealment. - 2. Protect against ignition at all times. Do not deliver foam-plastic insulation materials to Project site before installation time. - 3. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction. ### 1.9 PROJECT CONDITIONS A. Weather Limitations: Proceed with installation only when weather conditions permit metal panels to be installed according to manufacturers' written instructions and warranty requirements. ### B. Field Measurements: - 1. Established Dimensions for Foundations: Comply with established dimensions on approved anchor-bolt plans, establishing foundation dimensions and proceeding with fabricating structural framing without field measurements. Coordinate anchor-bolt installation to ensure that actual anchorage dimensions correspond to established dimensions. - 2. Established Dimensions for Metal Panels: Where field measurements cannot be made without delaying the Work, either establish framing and opening dimensions and proceed with fabricating metal panels without field measurements, or allow for field trimming metal panels. Coordinate construction to ensure that actual building dimensions, locations of structural members, and openings correspond to established dimensions. ### 1.10 COORDINATION - A. Coordinate size and location of concrete foundations and casting of anchor-bolt inserts into foundation walls and footings. Concrete, reinforcement, and formwork requirements are specified in Division 03 Section "Cast-in-Place Concrete." - B. Coordinate installation of roof penetrations, which are specified in Division 07 Section "Roof Accessories." - C. Coordinate metal panel assemblies with rain drainage work, flashing, trim, and construction of supports and other adjoining work to provide a leakproof, secure, and noncorrosive installation. ### 1.11 WARRANTY - A. Special Warranty on Metal Panel Finishes: Manufacturer's standard form in which manufacturer agrees to repair finish or replace metal panels that show evidence of deterioration of factory-applied finishes within specified warranty period. - 1. Siliconized Polyester Finish: Deterioration includes, but is not limited to, the following: - a. Color fading more than 15 Hunter units when tested according to ASTM D 2244. - b. Chalking in excess of a No. 2 rating when tested according to ASTM D 4214. - c. Cracking, checking, peeling, or failure of paint to adhere to bare metal. - 2. Fluoropolymer Finish: Deterioration includes, but is not limited to, the following: - a. Color fading more than 5 Hunter units when tested according to ASTM D 2244. - b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214. - c. Cracking, checking, peeling, or failure of paint to adhere to bare metal. - 3. Finish Warranty Period: 20 years from date of Substantial Completion. - B. Special Weathertightness Warranty for Standing-Seam Metal Roof Panels: Manufacturer's standard form in which manufacturer agrees to repair or replace standing-seam, metal roof panel assemblies that fail to remain weathertight, including leaks, within specified warranty period. - 1. Warranty Period: 20 years from date of Substantial Completion. ## PART 2 - PRODUCTS ### 2.1 MANUFACTURERS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Behlen Mfg. Co. - 2. GEM Buildings. - 3. Others as approved by Architect prior to bid. Submit proposals for alternate manufacturers not less than seven (7) days prior to bid. See article 1.7.B, above. ### 2.2 BUILDING DESCRIPTION - A. Primary Structurals: Frames will consist of welded-up plate section columns and roof beams or trusses complete with necessary splice plates for bolted field assembly as described in the TECHNICAL SPECIFICATIONS. All bolts for field assembly of frame members will be high strength bolts as indicated on erection drawings. - 1. Beam and post endwall frames will consist of endwall corner posts, endwall roof beams, and endwall posts as required by design criteria. - 2. Connection of all major structural members will be made with A 325 high-tensile bolts through prepunched or predrilled holes for exact alignment. - B. Secondary Structurals: Secondary structurals shall be purlins, truss purlins or girts with a gray primer finish applied by a coil coater or joists with factory applied gray primer. ## 2.3 STRUCTURAL-FRAMING MATERIALS - A. W-Shapes: ASTM A 992/A 992M; ASTM A 572/A 572M, Grade 50 or 55 (345 or 380); or ASTM A 529/A 529M, Grade 50 or 55 (345 or 380). - B. Channels, Angles, M-Shapes, and S-Shapes: ASTM A 36/A 36M; ASTM A 572/A 572M, Grade 50 or 55 (345 or 380); or ASTM A 529/A 529M, Grade 50 or 55 (345 or 380). - C. Plate and Bar: ASTM A 36/A 36M; ASTM A 572/A 572M, Grade 50 or 55 (345 or 380); or ASTM A 529/A 529M, Grade 50 or 55 (345 or 380). - D. Steel Pipe: ASTM A 53/A 53M, Type E or S, Grade B. - E. Cold-Formed Hollow Structural Sections: ASTM A 500, Grade B or C, structural tubing. - F. Structural-Steel Sheet: Hot-rolled, ASTM A 1011/A 1011M, Structural Steel (SS), Grades 30 through 55 (205 through 380), or High-Strength Low Alloy Steel (HSLAS), Grades 45 through 70 (310 through 480); or cold-rolled, ASTM A 1008/A 1008M, Structural Steel (SS), Grades 25 through 80 (170 through 550), or High-Strength Low Alloy Steel (HSLAS), Grades 45 through 70 (310 through 480). - G. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Structural Steel (SS), Grades 33 through 80 (230 through 550) or High-Strength Low Alloy Steel (HSLAS), Grades 50 through 80 (340 through 550); with G60 (Z180) coating designation; mill phosphatized. - H. Metallic-Coated Steel Sheet Prepainted with Coil Coating: Steel sheet metallic coated by the hot-dip process and prepainted by the coil-coating process to comply with ASTM A 755/A 755M. - 1. Zinc-Coated (Galvanized) Steel Sheet: ASTM A 653/A 653M, Structural Steel (SS), Grades 33 through 80 (230 through 550) or High-Strength Low Alloy Steel (HSLAS), Grades 50 through 80 (340 through 550); with G90 (Z275) coating designation. - 2. Aluminum-Zinc Alloy-Coated Steel Sheet: ASTM A 792/A 792M, Structural Steel (SS), Grade 50 or 80 (340 or 550); with Class AZ50 (AZM150) coating. - I. Joist Girders: Manufactured according to "Standard Specifications for Joist Girders," in SJI's "Standard Specifications, Load Tables, and Weight Tables for Steel Joists and Joist Girders," with steel-angle, top-and bottom-chord members; with end- and top-chord arrangements as indicated and required for primary framing. - J. Steel Joists: Manufactured according to "Standard Specifications for Open Web Steel Joists, K-Series," in SJI's "Standard Specifications, Load Tables, and Weight Tables for Steel Joists and Joist Girders," with steel-angle, top- and bottom-chord members; with end- and top-chord arrangements as indicated and required for secondary framing. - K. Non-High-Strength Bolts, Nuts, and Washers: ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6), carbon-steel, hex-head bolts; ASTM A 563 (ASTM A 563M) carbon-steel hex nuts; and ASTM F 844 plain (flat) steel washers. - 1. Finish: Hot-dip zinc coating, ASTM A 153/A 153M, Class C. - L. High-Strength Bolts, Nuts, and Washers: ASTM A 325 (ASTM A 325M), Type 1, heavy hex steel structural bolts; ASTM A 563 (ASTM A 563M) heavy hex carbon-steel nuts; and ASTM F 436 (ASTM F 436M) hardened carbon-steel washers. - 1. Finish: Hot-dip zinc coating, ASTM A 153/A 153M, Class C. - 2. Tension-Control, High-Strength Bolt-Nut-Washer Assemblies: ASTM F 1852, Type 1,
heavy-hex-head steel structural bolts with splined ends. - a. Finish: Mechanically deposited zinc coating, ASTM B 695, Class 50. - M. High-Strength Bolts, Nuts, and Washers: ASTM A 490 (ASTM A 490M), Type 1, heavy hex steel structural bolts, or tension-control, bolt-nut-washer assemblies with splined ends; ASTM A 563 (ASTM A 563M) heavy hex carbon-steel nuts; and ASTM F 436 (ASTM F 436M) hardened carbon-steel washers, plain. - N. Unheaded Anchor Rods: ASTM A 36/A 36M, or ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6). - 1. Configuration: Straight. - 2. Nuts: ASTM A 563 (ASTM A 563M) heavy hex carbon steel. - 3. Plate Washers: ASTM A 36/A 36M carbon steel. - 4. Washers: ASTM F 436 (ASTM F 436M) hardened carbon steel. - 5. Finish: Hot-dip zinc coating, ASTM A 153/A 153M, Class C. - O. Headed Anchor Rods: ASTM F 1554, Grade 36, or ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6), straight. - 1. Nuts: ASTM A 563 (ASTM A 563M) heavy hex carbon steel. - 2. Plate Washers: ASTM A 36/A 36M carbon steel. - 3. Washers: ASTM F 436 (ASTM F 436M) hardened carbon steel. - 4. Finish: Hot-dip zinc coating, ASTM A 153/A 153M, Class C. - P. Threaded Rods: ASTM A 36/A 36M, or ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6). - 1. Nuts: ASTM A 563 (ASTM A 563M) heavy hex carbon steel. - 2. Washers: ASTM F 436 (ASTM F 436M) hardened, or ASTM A 36/A 36M carbon steel. - 3. Finish: Hot-dip zinc coating, ASTM A 153/A 153M, Class C. - Q. Primer: SSPC-Paint 15, Type I, red oxide. ### 2.4 MATERIALS FOR FIELD-ASSEMBLED METAL PANELS - A. Metallic-Coated Steel Sheet Pre-painted with Coil Coating: Steel sheet metallic coated by the hot-dip process and pre-painted by the coil-coating process to comply with ASTM A 755/A 755M. - 1. Zinc-Coated (Galvanized) Steel Sheet: ASTM A 653/A 653M, Structural Steel (SS), Grades 33 through 80 (230 through 550), with G90 (Z275) coating designation. - 2. Aluminum-Zinc Alloy-Coated Steel Sheet: ASTM A 792/A 792M, Structural Steel (SS), Grade 50 or 80 (340 or 550); with Class AZ50 (AZM150) coating designation. - 3. Surface: Smooth, flat finish. - 4. Exposed Finishes: Apply the following coil coating, as specified or indicated on Drawings: - a. High-Performance Organic Finish (2-Coat Fluoropolymer): AA-C12C40R1x (Chemical Finish: cleaned with inhibited chemicals; Chemical Finish: conversion coating; Organic Coating: manufacturer's standard 2-coat, thermocured system consisting of specially formulated inhibitive primer and fluoropolymer color topcoat containing not less than 70 percent polyvinylidene fluoride resin by weight). Prepare, pretreat, and apply coating to exposed metal surfaces to comply with AAMA 2604 or AAMA 2605 and with coating and resin manufacturers' written instructions. - Concealed Finish: Apply pretreatment and manufacturer's standard white or light-colored backer finish, consisting of prime coat and wash coat with a total minimum dry film thickness of 0.5 mil (0.013 mm). ## 2.5 THERMAL INSULATION FOR FIELD-ASSEMBLED METAL PANELS - A. Mineral-Fiber-Blanket Insulation: ASTM C 665, type indicated below; consisting of fibers manufactured from glass, slag wool, or rock wool. - 1. Type II, Category 1, Class A. - 2. Comply with requirements of Division 07 Section "Thermal Insulation" - B. Vapor-Retarder Facing: ASTM C 1136, with permeance not greater than 0.02 perm (1.15 ng/Pa x s x sq. m) when tested according to ASTM E 96, Desiccant Method. - 1. Composition: See Division 07 Section "Thermal Insulation". - C. Faced, Polyisocyanurate Board Insulation: ASTM C 1289, Type I (foil facing), Class 1 or 2, with maximum flame-spread and smoke-developed indexes of 75 and 450, respectively, based on tests performed on unfaced core. - D. Retainer Strips: 0.019-inch- (0.5-mm-) thick, formed, galvanized steel or PVC retainer clips colored to match insulation facing. - E. Vapor-Retarder Tape: Pressure-sensitive tape of type recommended by vapor-retarder manufacturer for sealing joints and penetrations in vapor retarder. ## 2.6 DOOR AND FRAME MATERIALS A. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Commercial Steel (CS), Type B; with G60 (Z180) zinc (galvanized) or A60 (ZF180) zinc-iron-alloy (galvannealed) coating designation. ### 2.7 MISCELLANEOUS MATERIALS - A. Fasteners: Self-tapping screws, bolts, nuts, self-locking rivets and bolts, end-welded studs, and other suitable fasteners designed to withstand design loads. Provide fasteners with heads matching color of materials being fastened by means of plastic caps or factory-applied coating. - Fasteners for Metal Roof Panels: Self-drilling or self-tapping, zinc-plated, hex-head carbon-steel screws, with a stainless-steel cap or zinc-aluminum-alloy head and EPDM or neoprene sealing washer. - 2. Fasteners for Metal Wall Panels: Self-drilling or self-tapping, zinc-plated, hex-head carbon-steel screws, with nylon or polypropylene washer. - 3. Fasteners for Flashing and Trim: Blind fasteners or self-drilling screws with hex washer head. - 4. Blind Fasteners: High-strength aluminum or stainless-steel rivets. - B. Bituminous Coating: Cold-applied asphalt mastic, SSPC-Paint 12, compounded for 15-mil (0.4-mm) dry film thickness per coat. Provide inert-type noncorrosive compound free of asbestos fibers, sulfur components, and other deleterious impurities. - C. Backer Board: Hardboard complying with AHA A135.4, Class 1 tempered, 1/4 inch (6 mm) thick, unless otherwise indicated. - D. Gypsum Board: Type X, of thicknesses indicated, complying with ASTM C 442/C 442M or ASTM C 36/C 36M. - E. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time. ## F. Metal Panel Sealants: - 1. Sealant Tape: Pressure-sensitive, 100 percent solids, gray polyisobutylene compound sealant tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape of manufacturer's standard size. - 2. Joint Sealant: ASTM C 920; one-part elastomeric polyurethane, polysulfide, or silicone-rubber sealant; of type, grade, class, and use classifications required to seal joints in metal panels and remain weathertight; and as recommended by metal building system manufacturer. ### 2.8 FABRICATION, GENERAL - A. General: Design components and field connections required for erection to permit easy assembly. - Mark each piece and part of the assembly to correspond with previously prepared erection drawings, diagrams, and instruction manuals. - 2. Fabricate structural framing to produce clean, smooth cuts and bends. Punch holes of proper size, shape, and location. Members shall be free of cracks, tears, and ruptures. - B. Tolerances: Comply with MBMA's "Metal Building Systems Manual": Chapter IV, Section 9, "Fabrication and Erection Tolerances." - C. Metal Panels: Fabricate and finish metal panels at the factory to greatest extent possible, by manufacturer's standard procedures and processes, as necessary to fulfill indicated performance requirements. Comply with indicated profiles and with dimensional and structural requirements. - 1. Provide panel profile, including major ribs and intermediate stiffening ribs, if any, for full length of metal panel. ### 2.9 STRUCTURAL FRAMING - A. Primary Framing: Manufacturer's standard structural primary framing system, designed to withstand required loads and specified requirements. Primary framing includes transverse and lean-to frames; rafter, rake, and canopy beams; sidewall, intermediate, end-wall, and corner columns; and wind bracing. - 1. General: Provide frames with attachment plates, bearing plates, and splice members. Factory drill for field-bolted assembly. Provide frame span and spacing indicated. - 2. Rigid Clear-Span Frames: I-shaped frame sections fabricated from shop-welded, built-up steel plates or structural-steel shapes. Interior columns are not permitted. - 3. Truss-Frame, Clear-Span Frames: Rafter frames fabricated from joist girders, and I-shaped column sections fabricated from shop-welded, built-up steel plates or structural-steel shapes. - 4. Frame Configuration: Single gable. - 5. Exterior Column Type: Uniform depth or Tapered. - 6. Rafter Type: Uniform depth or Tapered. - B. End-Wall Framing: Manufacturer's standard primary end-wall framing fabricated for field-bolted assembly to comply with the following: - End-Wall and Corner Columns: I-shaped sections fabricated from structural-steel shapes; shopwelded, built-up steel plates; or C-shaped, cold-formed, structural-steel sheet; with minimum thickness of 0.0598 inch (1.5 mm). - End-Wall Rafters: C-shaped, cold-formed, structural-steel sheet; with minimum thickness of 0.0598 inch (1.5 mm); or I-shaped sections fabricated from shop-welded, built-up steel plates or structural-steel shapes. - C. Secondary Framing: Manufacturer's standard secondary framing members, including purlins, girts, eave struts, flange bracing, base members, gable angles, clips, headers, jambs, and other miscellaneous structural members. Fabricate framing from cold-formed, structural-steel sheet or roll-formed, metallic-coated steel sheet prepainted with coil coating, unless otherwise indicated, to comply with the following: - 1. Purlins: C- or Z-shaped sections; fabricated from minimum 0.0598-inch- (1.5-mm-) thick steel sheet, built-up steel plates, or structural-steel shapes; minimum 2-1/2-inch- (64-mm-) wide flanges. - Depth: 8 inches (203 mm) minimum, but not less than that required to comply with system performance requirements. - 2. Girts: C- or Z-shaped sections; fabricated from minimum 0.0598-inch- (1.5-mm-) thick steel sheet, built-up steel plates, or structural-steel shapes. Form ends of Z-sections with stiffening lips angled 40 to 50 degrees to flange and with minimum 2-1/2-inch- (64-mm-) wide flanges. - a. Depth: 8 inches (203 mm) minimum, but not less than that required to comply with system performance requirements. -
3. Eave Struts: Unequal-flange, C-shaped sections; fabricated from 0.0598-inch- (1.5-mm-) thick steel sheet, built-up steel plates, or structural-steel shapes; to provide adequate backup for metal panels. - 4. Flange Bracing: Minimum 2-by-2-by-1/8-inch (51-by-51-by-3-mm) structural-steel angles or 1-inch (25-mm) diameter, cold-formed structural tubing to stiffen primary frame flanges. - 5. Sag Bracing: Minimum 1-by-1-by-1/8-inch (25-by-25-by-3-mm) structural-steel angles. - 6. Base or Sill Angles: Minimum 3-by-2-by-0.0598-inch (76-by-51-by-1.5-mm) zinc-coated (galvanized) steel sheet. - 7. Purlin and Girt Clips: Minimum 0.0598-inch- (1.5-mm-) thick, steel sheet. Provide galvanized clips where clips are connected to galvanized framing members. - 8. Secondary End-Wall Framing: Manufacturer's standard sections fabricated from minimum 0.0598-inch- (1.5-mm-) thick, zinc-coated (galvanized) steel sheet. - Framing for Openings: Channel shapes; fabricated from minimum 0.0598-inch- (1.5-mm-) thick, cold-formed, structural-steel sheet or structural-steel shapes. Frame head and jamb of door openings, and head, jamb, and sill of other openings. - Miscellaneous Structural Members: Manufacturer's standard sections fabricated from cold-formed, structural-steel sheet; built-up steel plates; or zinc-coated (galvanized) steel sheet; designed to withstand required loads. - 11. Coordinate placement and locations of secondary and/or miscellaneous structural members so as to provide support at top edge of interior plywood liner panels, height(s) as indicated on Drawings. - D. Bracing: Provide adjustable wind bracing as follows: - Rods: ASTM A 36/A 36M; ASTM A 572/A 572M, Grade 50 (345); or ASTM A 529/A 529M, Grade 50 (345); minimum 1/2-inch- (13-mm-) diameter steel; threaded full length or threaded a minimum of 6 inches (152 mm) at each end. - 2. Cable: ASTM A 475, 1/4-inch- (6-mm-) (minimum) diameter, extra-high-strength grade, Class B zinc-coated, 7-strand steel; with threaded end anchors. - 3. Do not use bolted angle braces. - E. Bolts: Provide plain finish bolts for structural-framing components that are primed or finish painted. Provide zinc-plated or hot-dipped galvanized bolts for structural-framing components that are galvanized. - F. Factory-Primed Finish: Apply specified primer immediately after cleaning and pretreating. - 1. Prime primary, secondary, and end-wall structural-framing members to a minimum dry film thickness of 1 mil (0.025 mm). - a. Prime secondary steel framing formed from uncoated steel sheet to a minimum dry film thickness of 0.5 mil (0.013 mm) on each side. - 2. Prime galvanized members with specified primer, after phosphoric acid pretreatment. ## 2.10 METAL ROOF PANELS - A. General: Provide manufacturer's standard standing-seam metal roof panels, selected from options listed hereafter - B. Vertical-Rib, Standing-Seam Metal Roof Panels: Formed with vertical ribs at panel edges and intermediate stiffening ribs symmetrically spaced between ribs; designed for sequential installation by mechanically attaching panels to supports using concealed clips located under one side of panels and engaging opposite edge of adjacent panels. - 1. Material: Aluminum-zinc alloy-coated steel sheet, 0.0209 inch (0.55 mm) thick. - a. Exterior Finish: Fluoropolymer. - b. Color: As selected by Architect from manufacturer's full range. - 2. Clips: Manufacturer's standard, floating type to accommodate thermal movement; fabricated from zinc-coated (galvanized) steel, aluminum-zinc alloy-coated steel, or stainless-steel sheet. - 3. Joint Type: Panels snapped together. - 4. Panel Coverage: 16 inches (406 mm) minimum, 36 inches maximum. - 5. Panel Height: Manufacturer's standard for slope and performance conditions. - 6. Uplift Rating: UL 90. - C. Trapezoidal-Rib, Standing-Seam Metal Roof Panels: Formed with raised trapezoidal ribs at panel edges and intermediate stiffening ribs symmetrically spaced between ribs; designed for sequential installation by mechanically attaching panels to supports using concealed clips located under one side of panels and engaging opposite edge of adjacent panels. - 1. Material: Aluminum-zinc alloy-coated steel sheet, 0.0209 inch (0.55 mm) thick. - a. Exterior Finish: Fluoropolymer. - b. Color: As selected by Architect from manufacturer's full range. - 2. Clips: Manufacturer's standard, floating type to accommodate thermal movement; fabricated from zinc-coated (galvanized) steel, aluminum-zinc alloy-coated steel, or stainless-steel sheet. - 3. Joint Type: Panels snapped together. - 4. Panel Coverage: 24 inches (610 mm), minimum, 36 inches maximum. - 5. Panel Height: Manufacturer's standard for slope and performance conditions. - 6. Uplift Rating: UL 90. #### 2.11 DOORS AND FRAME A. Provide doors, frames and hardware per Division 08 sections specifying those materials. #### 2.12 WINDOWS A. Provide windows and glazing per Division 08 sections specifying those materials. ### 2.13 ACCESSORIES - A. General: Provide accessories as standard with metal building system manufacturer and as specified. Fabricate and finish accessories at the factory to greatest extent possible, by manufacturer's standard procedures and processes. Comply with indicated profiles and with dimensional and structural requirements. - 1. Form exposed sheet metal accessories that are without excessive oil canning, buckling, and tool marks and that are true to line and levels indicated, with exposed edges folded back to form hems. - B. Roof Panel Accessories: Provide components required for a complete metal roof panel assembly including copings, fasciae, corner units, ridge closures, clips, sealants, gaskets, fillers, closure strips, and similar items. Match material and finish of metal roof panels, unless otherwise indicated. - 1. Closures: Provide closures at eaves and ridges, fabricated of same material as metal roof panels. - 2. Clips: Manufacturer's standard, formed from steel sheet, designed to withstand negative-load requirements. - 3. Cleats: Manufacturer's standard, mechanically seamed cleats formed from steel sheet. - 4. Backing Plates: Provide metal backing plates at panel end splices, fabricated from material recommended by manufacturer. - Closure Strips: Closed-cell, expanded, cellular, rubber or crosslinked, polyolefin-foam or closedcell laminated polyethylene; minimum 1-inch- (25-mm-) thick, flexible closure strips; cut or premolded to match metal roof panel profile. Provide closure strips where indicated or necessary to ensure weathertight construction. - 6. Thermal Spacer Blocks: Where metal panels attach directly to purlins, provide thermal spacer blocks of thickness required to provide 1 inch (25 mm) standoff; fabricated from extruded polystyrene. - 7. Snow guards/fences: As specified below. - C. Wall Panel Accessories: Provide components required for a complete metal wall panel assembly including copings, fasciae, mullions, sills, corner units, clips, sealants, gaskets, fillers, closure strips, and similar items. Match material and finish of metal wall panels, unless otherwise indicated. - 1. Closures: Provide closures at eaves and rakes, fabricated of same material as metal wall panels. - 2. Backing Plates: Provide metal backing plates at panel end splices, fabricated from material recommended by manufacturer. - Closure Strips: Closed-cell, expanded, cellular, rubber or crosslinked, polyolefin-foam or closed-cell laminated polyethylene; minimum 1-inch- (25-mm-) thick, flexible closure strips; cut or premolded to match metal wall panel profile. Provide closure strips where indicated or necessary to ensure weathertight construction. - D. Flashing and Trim: Formed from minimum 0.0159-inch- (0.40-mm-) thick, metallic-coated steel sheet or aluminum-zinc alloy-coated steel sheet prepainted with coil coating; finished to match adjacent metal panels. - 1. Provide flashing and trim as required to seal against weather and to provide finished appearance. Locations include, but are not limited to, eaves, rakes, corners, bases, framed openings, ridges, fasciae, and fillers. - 2. Opening Trim: Minimum 0.0269-inch- (0.70-mm-) thick, metallic-coated steel sheet or aluminum-zinc alloy-coated steel sheet prepainted with coil coating. Trim head and jamb of door openings, and head, jamb, and sill of other openings. - E. Gutters: Formed from minimum 0.0159-inch- (0.40-mm-) thick, metallic-coated steel sheet or aluminum-zinc alloy-coated steel sheet prepainted with coil coating; finished to match roof fascia and rake trim. Match profile of gable trim, complete with end pieces, outlet tubes, and other special pieces as required. Fabricate in minimum 96-inch- (2438-mm-) long sections, sized according to SMACNA's "Architectural Sheet Metal Manual." - 1. Gutter Supports: Fabricated from same material and finish as gutters; spaced 36 inches (900 mm) - 2. Strainers: Bronze, copper, or aluminum wire ball type at outlets. - F. Downspouts: Formed from 0.0159-inch- (0.4-mm-) thick, zinc-coated (galvanized) steel sheet or aluminum-zinc alloy-coated steel sheet prepainted with coil coating; finished to match metal wall panels. Fabricate in minimum 10-foot- (3-m-) long sections, complete with formed elbows and offsets. - 1. Mounting Straps: Fabricated from same material and finish as gutters; spaced 10 feet (3 m) o.c. - G. Louvers: Size and design indicated; self-framing and self-flashing. Fabricate welded frames from minimum 0.0428-inch- (1.1-mm-) thick, metallic-coated steel sheet; finished to match metal wall panels. Form blades from 0.0329-inch- (0.85-mm-) thick, metallic-coated steel sheet; folded or beaded at edges, set at an angle that excludes driving rains, and secured to frames by riveting or welding. Fabricate louvers with equal blade spacing to produce uniform appearance. - 1. Blades: Fixed. - Blades: Adjustable type, with weather-stripped edges, and manually operated by hand crank or pull chain. - Free Area: Not less than 7.0 sq. ft. (0.65
sq. m) for 48-inch- (1220-mm-) wide by 48-inch- (1220-mm-) high louver. - 4. Bird Screening: Galvanized steel, 1/2-inch- (13-mm-) square mesh, 0.041-inch (1.04-mm) wire; with rewirable frames, removable and secured with clips, fabricated of same kind and form of metal and with same finish as for lowers. - a. Mounting: Interior face of louvers. - Vertical Mullions: Provide mullions at spacings recommended by manufacturer, or 72 inches (1830 mm) o.c., whichever is less. - H. Snow Guards: Prefabricated, noncorrosive units designed to be installed without penetrating roof panel, with predrilled holes and clamps or hooks for anchoring. - 1. Metal-Type Guard: Consisting of aluminum or stainless-steel rods or bars held in place by supports clamped to vertical ribs of standing-seam roof. - a. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following: - b. Products: Subject to compliance with requirements, provide one of the following: - 1) LMCurbs; S-5! SnoFence. - 2) Riddell & Company, Inc.; Snobar. - 3) Snow Management Systems; Vermont Snowguard. - I. Pipe Flashing: Premolded, EPDM pipe collar with flexible aluminum ring bonded to base. ## 2.14 FINISHES, GENERAL - A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes. - B. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in the same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast. ### 2.15 SOURCE QUALITY CONTROL - A. Testing Agency: Owner will engage a qualified testing and inspecting agency to perform the following tests and inspections and to submit reports. - B. Special Inspector: Owner will engage a qualified special inspector to perform the following tests and inspections and to submit reports. Special Inspector will verify that manufacturer maintains detailed fabrication and quality-control procedures and will review the completeness and adequacy of those procedures to perform the Work. - 1. Special inspections will not be required if fabrication is performed by a manufacturer registered and approved by authorities having jurisdiction to perform such Work without special inspection. - a. After fabrication, submit certificate of compliance with copy to authorities having jurisdiction certifying that Work was performed according to Contract requirements. ## C. Tests and Inspections: - Bolted Connections: Shop-bolted connections shall be tested and inspected according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts." - 2. Welded Connections: In addition to visual inspection, shop-welded connections shall be tested and inspected according to AWS D1.1 and the following inspection procedures, at inspector's option: - a. Liquid Penetrant Inspection: ASTM E 165. - b. Magnetic Particle Inspection: ASTM E 709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration will not be accepted. - c. Ultrasonic Inspection: ASTM E 164. - d. Radiographic Inspection: ASTM E 94. - D. Correct deficiencies in Work that test reports and inspections indicate do not comply with the Contract Documents. ### PART 3 - EXECUTION ### 3.1 EXAMINATION - A. Examine substrates, areas, and conditions, with Erector present, for compliance with requirements for installation tolerances and other conditions affecting performance of work. - 1. For the record, prepare written report, endorsed by Erector, listing conditions detrimental to performance of work. - B. Before erection proceeds, survey elevations and locations of concrete- and masonry-bearing surfaces and locations of anchor rods, bearing plates, and other embedments to receive structural framing, with Erector present, for compliance with requirements and metal building system manufacturer's tolerances. - 1. Engage land surveyor to perform surveying. - C. Proceed with erection only after unsatisfactory conditions have been corrected. ### 3.2 PREPARATION - A. Clean and prepare surfaces to be painted according to manufacturer's written instructions for each particular substrate condition. - B. Provide temporary shores, guys, braces, and other supports during erection to keep structural framing secure, plumb, and in alignment against temporary construction loads and loads equal in intensity to design loads. Remove temporary supports when permanent structural framing, connections, and bracing are in place, unless otherwise indicated. ### 3.3 ERECTION OF STRUCTURAL FRAMING - A. Erect metal building system according to manufacturer's written erection instructions and erection drawings. - B. Do not field cut, drill, or alter structural members without written approval from metal building system manufacturer's professional engineer. - C. Set structural framing accurately in locations and to elevations indicated and according to AISC specifications referenced in this Section. Maintain structural stability of frame during erection. - D. Base and Bearing Plates: Clean concrete- and masonry-bearing surfaces of bond-reducing materials, and roughen surfaces prior to setting plates. Clean bottom surface of plates. - 1. Set plates for structural members on wedges, shims, or setting nuts as required. - 2. Tighten anchor rods after supported members have been positioned and plumbed. Do not remove wedges or shims but, if protruding, cut off flush with edge of plate before packing with grout. - 3. Promptly pack grout solidly between bearing surfaces and plates so no voids remain. Neatly finish exposed surfaces; protect grout and allow to cure. Comply with manufacturer's written installation instructions for shrinkage-resistant grouts. - E. Align and adjust structural framing before permanently fastening. Before assembly, clean bearing surfaces and other surfaces that will be in permanent contact with framing. Perform necessary adjustments to compensate for discrepancies in elevations and alignment. - 1. Level and plumb individual members of structure. - 2. Make allowances for difference between temperature at time of erection and mean temperature when structure will be completed and in service. - F. Primary Framing and End Walls: Erect framing true to line, level, plumb, rigid, and secure. Level baseplates to a true even plane with full bearing to supporting structures, set with double-nutted anchor bolts. Use grout to obtain uniform bearing and to maintain a level base-line elevation. Moist cure grout for not less than seven days after placement. - 1. Make field connections using high-strength bolts installed according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts" for type of bolt and type of joint specified. - a. Joint Type: Snug tightened or pretensioned. - G. Secondary Framing: Erect framing true to line, level, plumb, rigid, and secure. Fasten secondary framing to primary framing using clips with field connections using non-high-strength bolts. - 1. Provide rake or gable purlins with tight-fitting closure channels and fasciae. - Locate and space wall girts to suit openings such as doors and windows, and interior plywood wall protection panels. - H. Steel Joists: Install joists and accessories plumb, square, and true to line; securely fasten to supporting construction according to SJI's "Standard Specifications, Load Tables, and Weight Tables for Steel Joists and Joist Girders," joist manufacturer's written recommendations, and requirements in this Section. - 1. Before installation, splice joists delivered to Project site in more than one piece. - 2. Space, adjust, and align joists accurately in location before permanently fastening. - Install temporary bracing and erection bridging, connections, and anchors to ensure that joists are stabilized during construction. - 4. Bolt joists to supporting steel framework using carbon-steel bolts, unless otherwise indicated. - 5. Bolt joists to supporting steel framework using high-strength structural bolts, unless otherwise indicated. Comply with RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts" for high-strength structural bolt installation and tightening requirements. - 6. Install and connect bridging concurrently with joist erection, before construction loads are applied. Anchor ends of bridging lines at top and bottom chords if terminating at walls or beams. - I. Bracing: Install bracing in roof and sidewalls where indicated on erection drawings. - 1. Tighten rod and cable bracing to avoid sag. - 2. Locate interior end-bay bracing only where indicated. - J. Framing for Openings: Provide shapes of proper design and size to reinforce openings and to carry loads and vibrations imposed, including equipment furnished under mechanical and electrical work. Securely attach to structural framing. - K. Erection Tolerances: Maintain erection tolerances of structural framing within AISC's "Code of Standard Practice for Steel Buildings and Bridges." - 3.4 METAL PANEL INSTALLATION, GENERAL - A. Examination: Examine primary and secondary framing to verify that structural panel support members and anchorages have been installed within alignment tolerances required by manufacturer. - 1. Examine roughing-in for components and systems penetrating metal panels to verify actual locations of penetrations relative to seam locations of metal panels before metal panel installation. - B. General: Anchor metal panels and other components of the Work securely in place, with provisions for thermal and structural movement. - 1. Field cut metal panels as required for doors, windows, and other openings. Cut openings as small as possible, neatly to size required,
and without damage to adjacent metal panel finishes. - Field cutting of metal panels by torch is not permitted unless approved in writing by manufacturer. - Coordinate installation of panels and order-of-work to accommodate installation of insulation and/or insulating spacers between panels and sub-framing. - Install metal panels perpendicular to structural supports, unless otherwise indicated. - 4. Flash and seal metal panels with weather closures at perimeter of openings and similar elements. Fasten with self-tapping screws. - 5. Locate and space fastenings in uniform vertical and horizontal alignment. - 6. Locate metal panel splices over, but not attached to, structural supports with end laps in alignment. Stagger panel splices and end laps to avoid a four-panel lap splice condition. - 7. Lap metal flashing over metal panels to allow moisture to run over and off the material. - C. Lap-Seam Metal Panels: Install screw fasteners with power tools having controlled torque adjusted to compress neoprene washer tightly without damage to washer, screw threads, or metal panels. Install screws in predrilled holes. - 1. Arrange and nest side-lap joints so prevailing winds blow over, not into, lapped joints. Lap ribbed or fluted sheets one full rib corrugation. Apply metal panels and associated items for neat and weathertight enclosure. Avoid "panel creep" or application not true to line. - D. Metal Protection: Where dissimilar metals will contact each other or corrosive substrates, protect against galvanic action by painting contact surfaces with bituminous coating, by applying rubberized-asphalt underlayment to each contact surface, or by other permanent separation as recommended by metal roof panel manufacturer. - E. Joint Sealers: Install gaskets, joint fillers, and sealants where indicated and where required for weatherproof performance of metal panel assemblies. Provide types of gaskets, fillers, and sealants indicated or, if not indicated, types recommended by metal panel manufacturer. - 1. Seal metal panel end laps with double beads of tape or sealant, full width of panel. Seal side joints where recommended by metal panel manufacturer. - 2. Prepare joints and apply sealants to comply with requirements in Division 07 Section "Joint Sealants." # 3.5 METAL ROOF PANEL INSTALLATION - A. General: Provide metal roof panels of full length from eave to ridge, unless otherwise indicated or restricted by shipping limitations. - 1. Install ridge caps as metal roof panel work proceeds. - 2. Flash and seal metal roof panels with weather closures at eaves and rakes. Fasten with self-tapping screws. - B. Field-Assembled, Standing-Seam Metal Roof Panels: Fasten metal roof panels to supports with concealed clips at each standing-seam joint at location, spacing, and with fasteners recommended by manufacturer. - 1. Install clips to supports with self-tapping fasteners. - 2. Install pressure plates at locations indicated in manufacturer's written installation instructions. - 3. Snap Joint: Nest standing seams and fasten together by interlocking and completely engaging factory-applied sealant. - 4. Seamed Joint: Crimp standing seams with manufacturer-approved motorized seamer tool so clip, metal roof panel, and factory-applied sealant are completely engaged. - 5. Rigidly fasten eave end of metal roof panels and allow ridge end free movement due to thermal expansion and contraction. Predrill panels for fasteners. - 6. Provide metal closures. - C. Field-Assembled, Lap-Seam Metal Roof Panels: Fasten metal roof panels to supports with exposed fasteners at each lapped joint at location and spacing recommended by manufacturer. - Provide metal-backed washers under heads of exposed fasteners bearing on weather side of metal roof panels. - 2. Provide sealant tape at lapped joints of metal roof panels and between panels and protruding equipment, vents, and accessories. - 3. Apply a continuous ribbon of sealant tape to weather-side surface of fastenings on end laps and on side laps of nesting-type metal panels; on side laps of ribbed or fluted metal panels; and elsewhere as needed to make metal panels weatherproof to driving rains. - 4. At metal panel splices, nest panels with minimum 6-inch (152-mm) end lap, sealed with butylrubber sealant and fastened together by interlocking clamping plates. - D. Metal Fascia Panels: Align bottom of metal panels and fasten with blind rivets, bolts, or self-tapping screws. Flash and seal metal panels with weather closures where fasciae meet soffits, along lower panel edges, and at perimeter of all openings. - E. Metal Roof Panel Installation Tolerances: Shim and align metal roof panels within installed tolerance of 1/4 inch in 20 feet (6 mm in 6 m) on slope and location lines as indicated and within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles. ### 3.6 METAL WALL PANEL INSTALLATION - A. General: Install metal wall panels in orientation, sizes, and locations indicated on Drawings. Install panels perpendicular to girts, extending full height of building, unless otherwise indicated. Anchor metal wall panels and other components of the Work securely in place, with provisions for thermal and structural movement. - Unless otherwise indicated, begin metal panel installation at corners with center of rib lined up with line of framing. - 2. Shim or otherwise plumb substrates receiving metal wall panels. - 3. When two rows of metal panels are required, lap panels 4 inches (102 mm) minimum. - 4. When building height requires two rows of metal panels at gable ends, align lap of gable panels over metal wall panels at eave height. - 5. Rigidly fasten base end of metal wall panels and allow eave end free movement due to thermal expansion and contraction. Predrill panels. - 6. Flash and seal metal wall panels with weather closures at eaves, rakes, and at perimeter of all openings. Fasten with self-tapping screws. - 7. Install screw fasteners in predrilled holes. - 8. Install flashing and trim as metal wall panel work proceeds. - 9. Apply elastomeric sealant continuously between metal base channel (sill angle) and concrete, and elsewhere as indicated, or if not indicated, as necessary for waterproofing. - 10. Align bottom of metal wall panels and fasten with blind rivets, bolts, or self-tapping screws. - 11. Provide weatherproof escutcheons for pipe and conduit penetrating exterior walls. - B. Field-Assembled, Metal Wall Panels: Install metal wall panels on exterior side of girts. Attach metal wall panels to supports with fasteners as recommended by manufacturer. - 1. Field-Insulated Assemblies: Install thermal insulation as specified. Install metal liner panels over insulation on interior side of girts at locations indicated. Fasten with exposed fasteners as recommended by manufacturer. - C. Factory-Assembled, Insulated Metal Wall Panels: Install insulated metal wall panels on exterior side of girts. Attach panels to supports at each panel joint with concealed clip and fasteners at maximum 42 inches (1067 mm) o.c., but spaced not more than as recommended by manufacturer. Fully engage tongue and groove of adjacent insulated metal wall panels. - 1. Install clips to supports with self-tapping fasteners. - 2. Apply continuous ribbon of sealant to panel joint on concealed side of insulated metal wall panels as vapor seal; apply sealant to panel joint on exposed side of panels for weather seal. D. Installation Tolerances: Shim and align metal wall panels within installed tolerance of 1/4 inch in 20 feet (6 mm in 6 m), nonaccumulative, on level, plumb, and location lines as indicated and within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles. ### 3.7 THERMAL INSULATION INSTALLATION FOR FIELD-ASSEMBLED METAL PANELS - A. General: Install insulation concurrently with metal wall panel installation, in thickness indicated to cover entire wall, according to manufacturer's written instructions. - 1. Set vapor-retarder-faced units with vapor retarder to warm side of construction, unless otherwise indicated. Do not obstruct ventilation spaces, except for firestopping. - 2. Tape joints and ruptures in vapor retarder, and seal each continuous area of insulation to surrounding construction to ensure airtight installation. - 3. Install factory-laminated, vapor-retarder-faced blankets straight and true in one-piece lengths with both sets of facing tabs sealed to provide a complete vapor retarder. - 4. Install blankets straight and true in one-piece lengths. Install vapor retarder over insulation with both sets of facing tabs sealed to provide a complete vapor retarder. - B. Blanket Roof Insulation: Comply with the following installation method: - Over-Purlin-with-Spacer-Block Installation: Extend insulation and vapor retarder over and perpendicular to top flange of secondary framing members. Install layer of filler insulation over first layer to fill space formed by metal roof panel standoffs. Hold in place by panels fastened to standoffs. - a. Provide 1-layer insulation with total insulation value not less than R-19. - 2. Retainer Strips: Install retainer strips at each longitudinal insulation joint, straight and taut, nesting with secondary framing to hold insulation in place. - 3. Thermal Spacer Blocks: Where metal roof panels attach directly to purlins, install thermal spacer blocks. - C. Blanket Wall Insulation: Extend insulation and vapor retarder over and perpendicular to top flange of secondary framing members. The first layer of R-13 insulation batts is installed continuously perpendicular to the girts, and is compressed as the metal skin is attached to the girts. Hold in place by metal wall panels fastened to secondary framing. The second layer of R-13 insulation batts is installed within the framing cavity. - 1. Retainer Strips: Install retainer strips at each longitudinal insulation joint, straight and taut, nesting with secondary framing to hold insulation in
place. - 2. Provide 2-layer insulation with total insulation value not less than R-26. ### 3.8 DOOR AND FRAME INSTALLATION - A. General: Install doors and frames plumb, rigid, properly aligned, and securely fastened in place according to manufacturer's written instructions. Coordinate installation with wall flashings and other components. Seal perimeter of each door frame with elastomeric sealant used for metal wall panels. - B. Personnel Doors and Frames: Install doors and frames according to ANSI A250.8. Shim as necessary to comply with DHI A115.IG. Fit non-fire-rated doors accurately in their respective frames, with the following clearances: - 1. Between Doors and Frames at Jambs and Head: 1/8 inch (3 mm). - 2. Between Edges of Pairs of Doors: 1/8 inch (3 mm). - 3. At Door Sills with Threshold: 3/8 inch (9.5 mm). - 4. At Door Sills without Threshold: 3/4 inch (19.1 mm). - At fire-rated openings, install frames according to, and doors with clearances specified in, NFPA 80. - C. Field Glazing: Comply with installation requirements in Division 08 Section "Glazing." - D. Door Hardware: Mount units at heights indicated in DHI's "Recommended Locations for Architectural Hardware for Standard Steel Doors and Frames." - 1. Install surface-mounted items after finishes have been completed on substrates involved. - 2. Set units level, plumb, and true to line and location. Adjust and reinforce attachment substrates as necessary for proper installation and operation. - 3. Drill and countersink units that are not factory prepared for anchorage fasteners. Space fasteners and anchors according to industry standards. - 4. Set thresholds for exterior doors in full bed of butyl-rubber or polyisobutylene mastic sealant complying with requirements specified in Division 07 Section "Joint Sealants." #### 3.9 WINDOW INSTALLATION - A. General: Install windows plumb, rigid, properly aligned, without warp or rack of frames or sash, and securely fastened in place according to manufacturer's written instructions. Coordinate installation with wall flashings and other components. Seal perimeter of each window frame with elastomeric sealant used for metal wall panels. - Separate dissimilar materials from sources of corrosion or electrolytic action at points of contact with other materials by complying with requirements specified in "Dissimilar Materials" Paragraph in Appendix B in AAMA/NWWDA 101/I.S.2. - B. Set sill members in bed of sealant or with gaskets, as indicated, for weathertight construction. - C. Install windows and components to drain condensation, water penetrating joints, and moisture migrating within windows to the exterior. - D. Mount screens direct to frames with tapped screw clips. - E. Field Glazing: Comply with installation requirements in Division 08 Section "Glazing." ### 3.10 ACCESSORY INSTALLATION - A. General: Install accessories with positive anchorage to building and weathertight mounting, and provide for thermal expansion. Coordinate installation with flashings and other components. - 1. Install components required for a complete metal roof panel assembly including trim, copings, ridge closures, seam covers, flashings, sealants, gaskets, fillers, closure strips, and similar items. - 2. Install components for a complete metal wall panel assembly including trim, copings, corners, seam covers, flashings, sealants, gaskets, fillers, closure strips, and similar items. - Where dissimilar metals will contact each other or corrosive substrates, protect against galvanic action by painting contact surfaces with bituminous coating, by applying rubberized-asphalt underlayment to each contact surface, or by other permanent separation as recommended by manufacturer. - B. Flashing and Trim: Comply with performance requirements, manufacturer's written installation instructions, and SMACNA's "Architectural Sheet Metal Manual." Provide concealed fasteners where possible, and set units true to line and level as indicated. Install work with laps, joints, and seams that will be permanently watertight and weather resistant. - Install exposed flashing and trim that is without excessive oil canning, buckling, and tool marks and that is true to line and levels indicated, with exposed edges folded back to form hems. Install sheet metal flashing and trim to fit substrates and to result in waterproof and weather-resistant performance. - 2. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at a maximum of 10 feet (3 m) with no joints allowed within 24 inches (600 mm) of corner or intersection. Where lapped or bayonet-type expansion provisions cannot be used or would not be sufficiently weather resistant and waterproof, form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with mastic sealant (concealed within joints). - C. Gutters: Join sections with riveted and soldered or lapped and sealed joints. Attach gutters to eave with gutter hangers spaced not more than 4 feet (1.2 m) o.c. using manufacturer's standard fasteners. Provide end closures and seal watertight with sealant. Provide for thermal expansion. - D. Downspouts: Join sections with 1-1/2-inch (38-mm) telescoping joints. Provide fasteners designed to hold downspouts securely 1 inch (25 mm) away from walls; locate fasteners at top and bottom and at approximately 60 inches (1500 mm) o.c. in between. - 1. Provide elbows at base of downspouts to direct water away from building. - 2. Tie downspouts to underground drainage system indicated. - E. Louvers: Locate and place louver units level, plumb, and at indicated alignment with adjacent work. - Use concealed anchorages where possible. Provide brass or lead washers fitted to screws where required to protect metal surfaces and to make a weathertight connection. - 2. Provide perimeter reveals and openings of uniform width for sealants and joint fillers. - Protect galvanized- and nonferrous-metal surfaces from corrosion or galvanic action by applying a heavy coating of bituminous paint on surfaces that will be in contact with concrete, masonry, or dissimilar metals. - 4. Install concealed gaskets, flashings, joint fillers, and insulation as louver installation progresses, where weathertight louver joints are required. Comply with Division 07 Section "Joint Sealants" for sealants applied during louver installation. ### 3.11 FIELD QUALITY CONTROL - A. Testing Agency: Owner will engage a qualified testing and inspecting agency to perform the following tests and inspections and to submit reports. - B. Special Inspector: Owner will engage a qualified special inspector to perform the following tests and inspections and to submit reports. - C. Tests and Inspections: - High-Strength, Field-Bolted Connections: Connections shall be tested and inspected during installation according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts" - 2. Welded Connections: In addition to visual inspection, field-welded connections shall be tested and inspected according to AWS D1.1 and the following inspection procedures, at inspector's option: - a. Liquid Penetrant Inspection: ASTM E 165. - b. Magnetic Particle Inspection: ASTM E 709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration will not be accepted. - c. Ultrasonic Inspection: ASTM E 164. - d. Radiographic Inspection: ASTM E 94. - D. Correct deficiencies in Work that test reports and inspections indicate do not comply with the Contract Documents. ### 3.12 ADJUSTING Doors: After completing installation, test and adjust doors to operate easily, free of warp, twist, or distortion. - B. Door Hardware: Adjust and check each operating item of door hardware and each door to ensure proper operation and function of every unit. Replace units that cannot be adjusted to operate as intended. - Door Closers: Adjust door closers to compensate for final operation of heating and ventilating equipment. Adjust sweep period so that, from an open position of 70 degrees, the door will take at least 3 seconds to move to a point 3 inches (76 mm) from the latch, measured to the leading edge of the door. ### 3.13 CLEANING AND PROTECTION - A. Repair damaged galvanized coatings on galvanized items with galvanized repair paint according to ASTM A 780 and manufacturer's written instructions. - B. Touchup Painting: After erection, promptly clean, prepare, and prime or re-prime field connections, rust spots, and abraded surfaces of prime-painted structural framing, bearing plates, and accessories. - Clean and prepare surfaces by SSPC-SP 2, "Hand Tool Cleaning," or SSPC-SP 3, "Power Tool Cleaning." - 2. Apply a compatible primer of same type as shop primer used on adjacent surfaces. - C. Touchup Painting: Cleaning and touchup painting are specified in Division 09 painting Sections. - D. Metal Panels: Remove temporary protective coverings and strippable films, if any, as metal panels are installed. On completion of metal panel installation, clean finished surfaces as recommended by metal panel manufacturer. Maintain in a clean condition during construction. - 1. Replace metal panels that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures. - E. Doors and Frames: Immediately after installation, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying primer. - 1. Immediately before final inspection, remove protective wrappings from doors and frames. - F. Louvers: Clean exposed surfaces that are not protected by temporary covering, to remove fingerprints and soil during construction period. Do not let soil accumulate until final cleaning. - Restore louvers damaged during installation and construction period so no evidence remains of corrective work. If results of restoration are unsuccessful, as determined by Architect, remove damaged units and replace with new units. - a.
Touch up minor abrasions in finishes with air-dried coating that matches color and gloss of, and is compatible with, factory-applied finish coating. ### 3.14 DEMONSTRATION A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain operable accessories. Refer to Division 01 Section "Demonstration and Training." END OF SECTION 133419 ### SECTION 146000 - HOISTS AND CRANES # **GENERAL** ### 1.1 SECTION INCLUDES Dismounting, disassembly, storage, modification and reassembly of free standing jib cranes. ## 1.2 RELATED SECTIONS - A. Section 033000 Cast-in-Place Concrete: Concrete slab to receive free standing work station bridge crane. - B. Division 26 Section Wiring Methods: Electrical supply, conduit, wiring, and other electrical components for powering lifting device hoist and trolley tractor drive. # 1.3 REFERENCES - A. American Institute of Steel Construction (AISC) Manual of Steel Construction, Part 5, Specification for Structural Joints Using ASTM A325 or ASTM A490 Bolts. - B. American National Standards Institute (ANSI):ANSI B30.11 Monorails and Underhung Cranes. - C. American Society for Testing and Materials (ASTM) A36 Carbon Structural Steel. - D. American Society for Testing and Materials (ASTM) A325 Structural Bolts, Steel, Heat Treated, 120/150 ksi Minimum Tensile Strength. - E. American Society for Testing and Materials (ASTM) A490 Structural Bolts, Alloy Steel, Heat Treated, 150 ksi Minimum Tensile Strength. - F. American Society for Testing and Materials (ASTM) B221 Aluminum-Alloy Extruded Bar, Rod, Wire, Shape, and Tube. - G. American Welding Society (AWS) D1.1 Structural Welding Code. - H. Occupational Safety and Health Administration (OSHA) Specification 1910.179 -Overhead and Gantry Cranes. ## 1.4 SUBMITTALS - Submit under provisions of Division 01. - B. Product Data: Manufacturer's data sheets on each product to be used, including: - Describe capacities, performance, operation, and applied forces to foundation. - 2. Preparation instructions and recommendations. - 3. Storage and handling requirements and recommendations. - 4. Installation methods. ## C. Shop Drawings: Shop drawings showing configuration, dimensions, service area, and construction and installation details. ## 1.5 QUALITY ASSURANCE - A. Installer Qualifications: Company experienced in assembly and installation of cranes with 5 years successful experience and acceptable to crane manufacturer. - 1. Perform welding by certified operators in accordance with AWS D14.1. - 2. Bolted connections shall be in accordance with torque tightening procedures specified in AISC Manual, Part 5. - 3. Clearly label crane with rated load capacity. Place label at height and location easily read from floor level and loading position. ### 1.6 STORAGE, AND HANDLING - A. Store crane covered and out of the elements until ready for installation. - B. Store and dispose of solvent-based materials, and materials used with solvent-based materials, in accordance with requirements of local authorities having jurisdiction. ### 1.7 PROJECT CONDITIONS A. Maintain environmental conditions (temperature, humidity, and ventilation) within limits recommended by manufacturer for optimum results. Do not install products under environmental conditions outside manufacturer's absolute limits. ## PART 2 PRODUCTS - NOT USED #### PART 3 EXECUTION ### 3.1 EXAMINATION - A. Do not begin installation until support structures have been properly prepared. - B. Design and construction of reinforced concrete footings and slabs as detailed on Drawings and specified in other sections. Verify that accurate crane applied forces and anchor bolt patterns are provided for foundation design. ### 3.2 CRANE DISASSEMBLY - A. Prior to commencing disassembly of existing crane, field verify existing conditions and components. Label and/or number all components for tracking and reinstallation. - B. Remove all components in the order and by methods so as to prevent damage and to facilitate reassembly. As parts are removed, wrap and package individual parts and groups of parts for storage. Maintain a record of all parts which are damaged or lost during disassembly sufficient to facilitate obtaining replacements. - C. Store disassembled crane components in weather- and theft-resistant enclosure. If storage is off-site, provide bond and insurance against theft and/or damage. ## 3.3 CRANE MODIFICATIONS (Alternate #1) A. Scope of work for this portion of the project consists of modifications to the existing crane mast to raise the hook height to a minimum of 19 feet AFF. See drawings provided separately by crane manufacturer. Contact Mr. Bill Crow at Concord Material Handling, (216) 299-6606. - B. If the Alternate for structural modifications of the crane is made a part of the contract, verify that all existing crane components match the design basis indicated in the Drawings. If variations are found, identify those variations and inform the Architect immediately. Do not proceed with any modifications until an updated design is provided, or until instructed to do so by the Architect. - C. Execute modifications as indicated in the Drawings. Use best practices for metal fabrications and assemblies as called for in Division 05 specifications. Grind smooth all welds. Paint base plate, mast and boom (except capacity stickers). #### 3.4 CRANE INSTALLATION - A. Install crane and accessories in accordance with manufacturer's instructions and shop drawings. - B. Provide all required connections for electrical services. - C. Do not modify crane components in any manner without advance, written approval by crane manufacturer. - 1. Remove mast rotation stops so as to allow full, 360 degree rotation. - D. Clearances for moving crane components: - 1. 3 inches (76 mm) minimum vertical clearance from any overhead obstruction. - 2. 2 inches (51 mm) minimum horizontal clearance from any lateral obstruction. - E. Re-paint base, mast and jib, except moving parts and capacity plates/stickers. ## 3.5 FIELD QUALITY CONTROL - A. Move hoist trolley through entire travel to ensure crane is clear of obstructions and moves freely and smoothly. - B. Inspect installed crane. Verify all bolts are tight and lock washers fully compressed. - C. Field test crane and accessories for operating functions. Ensure crane movement is smooth and proper. Adjust as required and correct deficiencies. - D. Clean surfaces. If necessary, touch-up paint damage, scratches, and blemishes with manufacturer provided matching paint. - E. Protect crane from other construction operations. # 3.6 DEMONSTRATING AND TRAINING A. Provide demonstration and training session for Owner's representative covering operation and maintenance. # 3.7 PROTECTION - A. Protect installed products until completion of project. - B. Touch-up, repair or replace damaged products before Substantial Completion. ## END OF SECTION 146000 BLANK PAGE ## SECTION 311000 - SITE CLEARING #### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY - A. This Section includes the following: - 1. Removing above- and below-grade site improvements. - 2. Disconnecting, capping or sealing, and removing site utilities. - 3. Temporary erosion and sedimentation control measures. - B. Related Sections include the following: - 1. Division 01 Section "Temporary Facilities and Controls" for temporary utilities, temporary construction and support facilities, temporary security and protection facilities, and temporary erosion and sedimentation control procedures. - 2. Division 02 Section "Selective Structure Demolition" for partial demolition of buildings or structures undergoing alterations. - 3. Division 31 Section "Earth Moving" for soil materials, excavating, backfilling, and site grading. ### 1.3 DEFINITIONS A. Topsoil: Natural or cultivated surface-soil layer containing organic matter and sand, silt, and clay particles; friable, pervious, and black or a darker shade of brown, gray, or red than underlying subsoil; reasonably free of subsoil, clay lumps, gravel, and other objects more than 2 inches (50 mm) in diameter; and free of subsoil and weeds, roots, toxic materials, or other nonsoil materials. ### 1.4 MATERIAL OWNERSHIP A. Except for stripped topsoil or other materials indicated to remain Owner's property, cleared materials shall become Contractor's property and shall be removed from Project site. ### 1.5 QUALITY ASSURANCE A. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination." ### 1.6 PROJECT CONDITIONS - A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during site-clearing operations. - 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction. - 2. Provide alternate routes around closed or obstructed traffic ways if required by authorities having jurisdiction. - B. Salvable Improvements: Carefully remove items indicated to be salvaged and store on Owner's premises where indicated. - 1. Items to be salvaged and stockpiled for re-installation/re-use: Topsoil. - C. Utility Locator Service: Notify utility locator service for area where Project is located before site clearing. - D. Do not commence site clearing operations until temporary erosion and sedimentation control measures are in place. ### PART 2 - PRODUCTS ### 2.1 SOIL MATERIALS - A. Satisfactory Soil Materials: Requirements for satisfactory soil materials are specified in Division 31 Section "Earth Moving." - Obtain approved borrow soil materials off-site when satisfactory soil materials are not available onsite. #### PART 3 - EXECUTION #### 3.1
PREPARATION A. Protect and maintain benchmarks and survey control points from disturbance during construction. ## 3.2 TEMPORARY EROSION AND SEDIMENTATION CONTROL - A. Provide temporary erosion and sedimentation control measures to prevent soil erosion and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways, according to sediment and erosion control Drawings and a sediment and erosion control plan, specific to the site, that complies with EPA 832/R-92-005 or requirements of authorities having jurisdiction, whichever is more stringent. - B. Inspect, repair, and maintain erosion and sedimentation control measures during construction until project is completed. Site landscaping is the responsibility of the Owner. ## 3.3 SITE IMPROVEMENTS - A. Remove existing above- and below-grade improvements as indicated and as necessary to facilitate new construction.DISPOSAL - B. Disposal: Remove demolished materials and waste materials including trash and debris, and legally dispose of them off Owner's property. - 1. Do not burn waste material on-site. ## **END OF SECTION 311000** ### SECTION 312000 - EARTH MOVING #### PART 1 - GENERAL ### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY - A. This Section includes the following: - 1. Preparing subgrades for slabs-on-grade walks pavements and footings/foundations. - 2. Excavating and backfilling for buildings and structures. - 3. Drainage course for slabs-on-grade. - 4. Subbase course for concrete walks and pavements. - 5. Subbase and base course for asphalt paving. - 6. Excavating and backfilling for utility trenches. - 7. Excavating and backfilling trenches for buried mechanical and electrical utilities and pits for buried utility structures. - B. Related Sections include the following: - Division 01 Section "Unit Prices" for unit-price authorized additional excavation provisions. - 2. Division 01 Section "Temporary Facilities and Controls" for temporary controls, utilities, and support facilities. - 3. Division 03 Section "Cast-in-Place Concrete" for granular course if placed over vapor retarder and beneath the slab-on-grade. - 4. Divisions 21, 22, 23, 26, 27, and 28 Sections for installing underground mechanical and electrical utilities and buried mechanical and electrical structures. - 5. Division 31 Section "Site Clearing" for temporary erosion and sedimentation control measures, site stripping, grubbing, stripping and stockpiling topsoil, and removal of above- and below-grade improvements and utilities. - 6. Division 33 Section "Subdrainage" for drainage of slabs-on-grade. # 1.3 UNIT PRICES A. Unit prices for earthwork are included in Division 01 Section "Unit Prices." ### 1.4 DEFINITIONS - A. Backfill: Soil material or controlled low-strength material used to fill an excavation. - Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe. - 2. Final Backfill: Backfill placed over initial backfill to fill a trench. - B. Base Course: Course placed between the subbase course and hot-mix asphalt paving. - C. Bedding Course: Course placed over the excavated subgrade in a trench before laying pipe. - D. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill. - E. Drainage Course: Course supporting the slab-on-grade that also minimizes upward capillary flow of pore water. - F. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated. - 1. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Architect. Authorized additional excavation and replacement material will be paid for according to Contract provisions for unit prices. - 2. Bulk Excavation: Excavation more than 10 feet (3 m) in width and more than 30 feet (9 m) in length. - 3. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by Architect. Unauthorized excavation, as well as remedial work directed by Architect, shall be without additional compensation. - G. Fill: Soil materials used to raise existing grades. - H. Rock: Rock material in beds, ledges, unstratified masses, conglomerate deposits, and boulders of rock material that exceed 1 cu. yd. (0.76 cu. m) for bulk excavation or 3/4 cu. yd. (0.57 cu. m) for footing, trench, and pit excavation that cannot be removed by rock excavating equipment equivalent to the following in size and performance ratings, without systematic drilling, ram hammering, ripping, or blasting, when permitted: - 1. Excavation of Footings, Trenches, and Pits: Late-model, track-mounted hydraulic excavator; equipped with a 42-inch- (1065-mm-) wide, maximum, short-tip-radius rock bucket; rated at not less than 138-hp (103-kW) flywheel power with bucket-curling force of not less than 28,090 lbf (125 kN) and stick-crowd force of not less than 18,650 lbf (83 kN); measured according to SAE J-1179. - Bulk Excavation: Late-model, track-mounted loader; rated at not less than 210-hp (157-kW) flywheel power and developing a minimum of 48,510-lbf (216-kN) breakout force with a general-purpose bare bucket; measured according to SAE J-732. - Rock: Rock material in beds, ledges, unstratified masses, conglomerate deposits, and boulders of rock material 3/4 cu. yd. (0.57 cu. m) or more in volume that exceed a standard penetration resistance of 100 blows/2 inches (97 blows/50 mm) when tested by an independent geotechnical testing agency, according to ASTM D 1586. - J. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface. - K. Subbase Course: Course placed between the subgrade and base course for hot-mix asphalt pavement, or course placed between the subgrade and a cement concrete pavement or a cement concrete or hot-mix asphalt walk. - L. Subgrade: Surface or elevation remaining after completing excavation, or top surface of a fill or backfill immediately below subbase, drainage fill, or topsoil materials. - M. Utilities: On-site underground pipes, conduits, ducts, and cables, as well as underground services within buildings. ## 1.5 QUALITY ASSURANCE - A. Geotechnical Testing Agency Qualifications: An independent testing agency qualified according to ASTM E 329 to conduct soil materials and rock-definition testing, as documented according to ASTM D 3740 and ASTM E 548. - B. Preexcavation Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination." ## 1.6 PROJECT CONDITIONS - A. Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted in writing by Architect and then only after arranging to provide temporary utility services according to requirements indicated. - 1. Notify Architect not less than two days in advance of proposed utility interruptions. - 2. Do not proceed with utility interruptions without Architect's written permission. - 3. Contact utility-locator service for area where Project is located before excavating. # PART 2 - PRODUCTS # 2.1 SOIL MATERIALS A. General: Provide soil materials as identified in the "Geotechnical Study". ### PART 3 - EXECUTION ### 3.1 GENERAL A. Execute earthwork, earth moving and related activities per the "Geotechnical Study". # END OF SECTION 312000 BLANK PAGE ## SECTION 321216 - ASPHALT PAVING ### PART 1 - GENERAL ### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY ### A. Section Includes: - 1. Hot-mix asphalt patching. - 2. Hot-mix asphalt paving. # B. Related Sections: - 1. Division 02 Section "Structure Demolition" for demolition, removal, and recycling of existing asphalt pavements, and for geotextiles that are not embedded within courses of asphalt paving. - 2. Division 31 Section "Earth Moving" for aggregate subbase and base courses and for aggregate pavement shoulders. - 3. Division 32 Sections for other paving installed as part of crosswalks in asphalt pavement areas. - 4. Division 32 Section "Concrete Paving Joint Sealants" for joint sealants and fillers at paving terminations. - 5. Division 32 Section "Unit Paving" for bituminous setting bed for pavers. #### 1.3 DEFINITION A. Hot-Mix Asphalt Paving Terminology: Refer to ASTM D 8 for definitions of terms. ## 1.4 SUBMITTALS - A. Product Data: For each type of product indicated. Include technical data and tested physical and performance properties. - 1. Job-Mix Designs: Certification, by authorities having jurisdiction, of approval of each job mix proposed for the Work. - 2. Job-Mix Designs: For each job mix proposed for the Work. - B. Material Certificates: For each paving material, from manufacturer. ### 1.5 QUALITY ASSURANCE - A. Manufacturer Qualifications: A paving-mix manufacturer registered with and approved by authorities having jurisdiction of state in which Project is located. - B. Installer Qualifications: Imprinted-asphalt manufacturer's authorized installer who is trained and approved for installation of imprinted asphalt required for this Project. - C. Testing Agency Qualifications: Qualified according to ASTM D 3666 for testing indicated. - 1. Site density testing will be done by Wilding Engineering. - D. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of "Geotechnical Engineering Report, UCI Production Warehouse", dated January, 2008, by Wilding Engineering, for asphalt paving work. - Measurement and payment provisions and safety program submittals included in standard
specifications do not apply to this Section. - E. Preinstallation Conference: Conduct conference at Project site. - 1. Review methods and procedures related to hot-mix asphalt paving including, but not limited to, the following: - a. Review proposed sources of paving materials, including capabilities and location of plant that will manufacture hot-mix asphalt. - b. Review condition of subgrade and preparatory work. - c. Review requirements for protecting paving work, including restriction of traffic during installation period and for remainder of construction period. - d. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays. ## 1.6 DELIVERY, STORAGE, AND HANDLING - A. Deliver pavement-marking materials to Project site in original packages with seals unbroken and bearing manufacturer's labels containing brand name and type of material, date of manufacture, and directions for storage. - B. Store pavement-marking materials in a clean, dry, protected location within temperature range required by manufacturer. Protect stored materials from direct sunlight. ### 1.7 PROJECT CONDITIONS - A. Environmental Limitations: Do not apply asphalt materials if subgrade is wet or excessively damp, if rain is imminent or expected before time required for adequate cure, or if the following conditions are not met: - 1. Prime Coat: Minimum surface temperature of 60 deg F (15.6 deg C). - 2. Asphalt Base Course: Minimum surface temperature of 40 deg F (4.4 deg C) and rising at time of placement. - 3. Asphalt Surface Course: Minimum surface temperature of 60 deg F (15.6 deg C) at time of placement. ### PART 2 - PRODUCTS ### 2.1 AGGREGATES A. In accordane with "Geotechnical Study". # 2.2 ASPHALT MATERIALS A. In accordance with "Geotechnical Study". ### 2.3 AUXILIARY MATERIALS A. In accordance with "Geotechnical Study". # PART 3 - EXECUTION #### 3.1 EXAMINATION - A. Verify that subgrade is dry and in suitable condition to begin paving. - B. Proof-roll subgrade below pavements with heavy pneumatic-tired equipment to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades. - 1. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph (5 km/h). - 2. Proof roll with a loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons (13.6 tonnes). - 3. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Architect, and replace with compacted backfill or fill as directed. - C. Proceed with paving only after unsatisfactory conditions have been corrected. - D. Verify that utilities, traffic loop detectors, and other items requiring a cut and installation beneath the asphalt surface have been completed and that asphalt surface has been repaired flush with adjacent asphalt prior to beginning installation of imprinted asphalt. ### 3.2 SURFACE PREPARATION - A. General: Immediately before placing asphalt materials, remove loose and deleterious material from substrate surfaces. Ensure that prepared subgrade is ready to receive paving. - B. Herbicide Treatment: Apply herbicide according to manufacturer's recommended rates and written application instructions. Apply to dry, prepared subgrade or surface of compacted-aggregate base before applying paving materials. - 1. Mix herbicide with prime coat if formulated by manufacturer for that purpose. - C. Prime Coat: Apply uniformly over surface of compacted unbound-aggregate base course at a rate of 0.15 to 0.50 gal./sq. yd. (0.7 to 2.3 L/sq. m). Apply enough material to penetrate and seal but not flood surface. Allow prime coat to cure. - 1. If prime coat is not entirely absorbed within 24 hours after application, spread sand over surface to blot excess asphalt. Use enough sand to prevent pickup under traffic. Remove loose sand by sweeping before pavement is placed and after volatiles have evaporated. - 2. Protect primed substrate from damage until ready to receive paving. ### 3.3 HOT-MIX ASPHALT PLACING - A. Machine place hot-mix asphalt on prepared surface, spread uniformly, and strike off. Place asphalt mix by hand to areas inaccessible to equipment in a manner that prevents segregation of mix. Place each course to required grade, cross section, and thickness when compacted. - 1. Place hot-mix asphalt base course in number of lifts and thicknesses indicated. - 2. Place hot-mix asphalt surface course in single lift. - 3. Spread mix at minimum temperature of 250 deg F (121 deg C). - 4. Begin applying mix along centerline of crown for crowned sections and on high side of one-way slopes unless otherwise indicated. - 5. Regulate paver machine speed to obtain smooth, continuous surface free of pulls and tears in asphalt-paving mat. - B. Place paving in consecutive strips not less than 10 feet (3 m) wide unless infill edge strips of a lesser width are required. - After first strip has been placed and rolled, place succeeding strips and extend rolling to overlap previous strips. Complete a section of asphalt base course before placing asphalt surface course. - C. Promptly correct surface irregularities in paving course behind paver. Use suitable hand tools to remove excess material forming high spots. Fill depressions with hot-mix asphalt to prevent segregation of mix; use suitable hand tools to smooth surface. #### 3.4 JOINTS - A. Construct joints to ensure a continuous bond between adjoining paving sections. Construct joints free of depressions, with same texture and smoothness as other sections of hot-mix asphalt course. - 1. Clean contact surfaces and apply tack coat to joints. - 2. Offset longitudinal joints, in successive courses, a minimum of 6 inches (150 mm). - 3. Offset transverse joints, in successive courses, a minimum of 24 inches (600 mm). - 4. Construct transverse joints at each point where paver ends a day's work and resumes work at a subsequent time. Construct these joints using either "bulkhead" or "papered" method according to AI MS-22, for both "Ending a Lane" and "Resumption of Paving Operations." - 5. Compact joints as soon as hot-mix asphalt will bear roller weight without excessive displacement. - 6. Compact asphalt at joints to a density within 2 percent of specified course density. ### 3.5 COMPACTION - A. General: Begin compaction as soon as placed hot-mix paving will bear roller weight without excessive displacement. Compact hot-mix paving with hot, hand tampers or with vibratory-plate compactors in areas inaccessible to rollers. - 1. Complete compaction before mix temperature cools to 185 deg F (85 deg C). - B. Breakdown Rolling: Complete breakdown or initial rolling immediately after rolling joints and outside edge. Examine surface immediately after breakdown rolling for indicated crown, grade, and smoothness. Correct laydown and rolling operations to comply with requirements. - C. Intermediate Rolling: Begin intermediate rolling immediately after breakdown rolling while hot-mix asphalt is still hot enough to achieve specified density. Continue rolling until hot-mix asphalt course has been uniformly compacted to the following density: - 1. Average Density: 96 percent of reference laboratory density according to ASTM D 6927, but not less than 94 percent nor greater than 100 percent. - 2. Average Density: 92 percent of reference maximum theoretical density according to ASTM D 2041, but not less than 90 percent nor greater than 96 percent. - D. Finish Rolling: Finish roll paved surfaces to remove roller marks while hot-mix asphalt is still warm. - E. Edge Shaping: While surface is being compacted and finished, trim edges of pavement to proper alignment. Bevel edges while asphalt is still hot; compact thoroughly. - F. Repairs: Remove paved areas that are defective or contaminated with foreign materials and replace with fresh, hot-mix asphalt. Compact by rolling to specified density and surface smoothness. - G. Protection: After final rolling, do not permit vehicular traffic on pavement until it has cooled and hardened. - H. Erect barricades to protect paving from traffic until mixture has cooled enough not to become marked. ### 3.6 INSTALLATION TOLERANCES - A. Pavement Thickness: Compact each course to produce the thickness indicated within the following tolerances: - 1. Base Course: Plus or minus 1/2 inch (13 mm). - 2. Surface Course: Plus 1/4 inch (6 mm), no minus. - B. Pavement Surface Smoothness: Compact each course to produce a surface smoothness within the following tolerances as determined by using a 10-foot (3-m) straightedge applied transversely or longitudinally to paved areas: - 1. Base Course: 1/4 inch (6 mm). - 2. Surface Course: 1/8 inch (3 mm). - 3. Crowned Surfaces: Test with crowned template centered and at right angle to crown. Maximum allowable variance from template is 1/4 inch (6 mm). ### 3.7 FIELD QUALITY CONTROL - A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections. - 1. Wilding Engineering has been contracted to perform testing services. - B. Thickness: In-place compacted thickness of hot-mix asphalt courses will be determined according to ASTM D 3549. - C. Surface Smoothness: Finished surface of each hot-mix asphalt course will be tested for compliance with smoothness tolerances. - D. In-Place Density: Testing agency will take samples of uncompacted paving mixtures and compacted pavement according to ASTM D 979 or AASHTO T 168. - Reference maximum theoretical density will be determined by averaging results from four samples of hot-mix asphalt-paving mixture delivered daily to site, prepared according to ASTM D 2041, and compacted according to job-mix specifications. - In-place density of compacted pavement will be determined by testing core samples according to ASTM D 1188 or ASTM D 2726. - a. One core sample will be
taken for every 1000 sq. yd. (836 sq. m) or less of installed pavement, with no fewer than 3 cores taken. - Field density of in-place compacted pavement may also be determined by nuclear method according to ASTM D 2950 and correlated with ASTM D 1188 or ASTM D 2726. - E. Replace and compact hot-mix asphalt where core tests were taken. - F. Remove and replace or install additional hot-mix asphalt where test results or measurements indicate that it does not comply with specified requirements. # 3.8 DISPOSAL A. Except for material indicated to be recycled, remove excavated materials from Project site and legally dispose of them in an EPA-approved landfill. 1. Do not allow milled materials to accumulate on-site. END OF SECTION 321216 #### SECTION 321313 - CONCRETE PAVING ### PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. # 1.2 SUMMARY - A. This Section includes exterior cement concrete pavement for the following: - 1. Driveways and roadways. - 2. Walkways. - B. Related Sections include the following: - Division 03 Section "Cast-in-Place Concrete" for general building applications of concrete. - 2. Division 31 Section "Earth Moving" for subgrade preparation, grading, and subbase course. - 3. Division 32 Section "Concrete Paving Joint Sealants" for joint sealants of joints in concrete pavement and at isolation joints of concrete pavement with adjacent construction. ## 1.3 DEFINITIONS A. Cementitious Materials: Portland cement alone or in combination with one or more of blended hydraulic cement, fly ash and other pozzolans, and ground granulated blast-furnace slag. # 1.4 SUBMITTALS - A. Product Data: For each type of manufactured material and product indicated. - B. Design Mixtures: For each concrete pavement mixture. Include alternate mixture designs when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments. - C. Qualification Data: For manufacturer. - D. Material Test Reports: From a qualified testing agency indicating and interpreting test results for compliance of the following with requirements indicated, based on comprehensive testing of current materials: - 1. Aggregates. Include service record data indicating absence of deleterious expansion of concrete due to alkali-aggregate reactivity. - E. Material Certificates: Signed by manufacturers certifying that each of the following materials complies with requirements: - 1. Cementitious materials. - 2. Steel reinforcement and reinforcement accessories. - 3. Fiber reinforcement. - 4. Admixtures. - 5. Curing compounds. - 6. Water repellents. - 7. Applied finish materials. - 8. Bonding agent or epoxy adhesive. - 9. Joint fillers. - F. Field quality-control test reports. - G. Minutes of preinstallation conference. ## 1.5 QUALITY ASSURANCE - A. Manufacturer Qualifications: Manufacturer of ready-mixed concrete products who complies with ASTM C 94/C 94M requirements for production facilities and equipment. - Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities." - B. Testing Agency Qualifications: An independent agency qualified according to ASTM C 1077 and ASTM E 329 for testing indicated, as documented according to ASTM E 548. - 1. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-01 or an equivalent certification program. - C. ACI Publications: Comply with ACI 301, "Specification for Structural Concrete," unless modified by requirements in the Contract Documents. - D. Concrete Testing Service: Engage a qualified independent testing agency to perform material evaluation tests and to design concrete mixtures. - E. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination." - 1. Before submitting design mixtures, review concrete pavement mixture design and examine procedures for ensuring quality of concrete materials and concrete pavement construction practices. Require representatives, including the following, of each entity directly concerned with concrete pavement, to attend conference: - a. Contractor's superintendent. - b. Independent testing agency responsible for concrete design mixtures. - c. Ready-mix concrete producer. - d. Concrete pavement subcontractor. - 1) Tradesman designated to execute "special surface treatments". # 1.6 PROJECT CONDITIONS A. Traffic Control: Maintain access for vehicular and pedestrian traffic as required for other construction activities. ## PART 2 - PRODUCTS ## 2.1 MANUFACTURERS - A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection: - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified. ## 2.2 FORMS - A. Form Materials: Plywood, metal, metal-framed plywood, or other approved panel-type materials to provide full-depth, continuous, straight, smooth exposed surfaces. - 1. Use flexible or curved forms for curves with a radius 100 feet (30.5 m) or less. - B. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces. # 2.3 STEEL REINFORCEMENT - A. Plain-Steel Welded Wire Reinforcement: ASTM A 185, fabricated from as-drawn steel wire into flat sheets. - B. Deformed-Steel Welded Wire Reinforcement: ASTM A 497, flat sheet. - C. Epoxy-Coated Welded Wire Fabric: ASTM A 884/A 884M, Class A, plain steel. - D. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420); deformed. - E. Galvanized Reinforcing Bars: ASTM A 767/A 767M, Class II zinc coated, hot-dip galvanized after fabrication and bending; with ASTM A 615/A 615M, Grade 60 (Grade 420) deformed bars. - F. Epoxy-Coated Reinforcing Bars: ASTM A 775/A 775M or ASTM A 934/A 934M; with ASTM A 615/A 615M, Grade 60 (Grade 420) deformed bars. - G. Steel Bar Mats: ASTM A 184/A 184M; with ASTM A 615/A 615M, Grade 60 (Grade 420), deformed bars; assembled with clips. - H. Plain Steel Wire: ASTM A 82, galvanized. - I. Deformed-Steel Wire: ASTM A 496. - J. Epoxy-Coated-Steel Wire: ASTM A 884/A 884M, Class A coated, deformed. - K. Joint Dowel Bars: Plain steel bars, ASTM A 615/A 615M, Grade 60 (Grade 420). Cut bars true to length with ends square and free of burrs. - L. Epoxy-Coated Joint Dowel Bars: ASTM A 775/A 775M; with ASTM A 615/A 615M, Grade 60 (Grade 420), plain steel bars. - M. Tie Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), deformed. - N. Hook Bolts: ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6), internally and externally threaded. Design hook-bolt joint assembly to hold coupling against pavement form and in position during concreting operations, and to permit removal without damage to concrete or hook bolt. - O. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars, welded wire reinforcement, and dowels in place. Manufacture bar supports according to CRSI's "Manual of Standard Practice" from steel wire, plastic, or precast concrete of greater compressive strength than concrete, and as follows: - 1. Equip wire bar supports with sand plates or horizontal runners where base material will not support chair legs. - 2. For epoxy-coated reinforcement, use epoxy-coated or other dielectric-polymer-coated wire bar supports. - P. Epoxy Repair Coating: Liquid two-part epoxy repair coating, compatible with epoxy coating on reinforcement. - Q. Zinc Repair Material: ASTM A 780. ## 2.4 CONCRETE MATERIALS - A. Cementitious Material: Use one of the following cementitious materials, of the same type, brand, and source throughout the Project: - 1. Portland Cement: ASTM C 150, Type I/II, gray. - a. Fly Ash: ASTM C 618, Class C. - B. Normal-Weight Aggregates: ASTM C 33, Class 4S coarse aggregate, uniformly graded. Provide aggregates from a single source with documented service record data of at least 10 years' satisfactory service in similar pavement applications and service conditions using similar aggregates and cementitious materials. - 1. Maximum Coarse-Aggregate Size: 1 inch (25 mm) nominal. - 2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement. - C. Water: ASTM C 94/C 94M. - D. Air-Entraining Admixture: ASTM C 260. - E. Chemical Admixtures: Provide admixtures certified by manufacturer to be compatible with other admixtures and to contain not more than 0.1 percent water-soluble chloride ions by mass of cementitious material. - Water-Reducing Admixture: ASTM C 494/C 494M, Type A. - 2. Retarding Admixture: ASTM C 494/C 494M, Type B. - 3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D. - 4. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F. - 5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G. - 6. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II. ## 2.5 FIBER REINFORCEMENT A. Synthetic Fiber: Monofilament or fibrillated polypropylene fibers engineered and designed for use in concrete pavement, complying with ASTM C 1116, Type III, 1/2 to 1-1/2 inches (13 to 38 mm) long. ### 1. Products: - a. Monofilament Fibers: - 1) Axim Concrete Technologies; Fibrasol IIP. - 2) Euclid Chemical Company (The); Fiberstrand 100. - 3) FORTA Corporation; Forta Mono. - 4) Grace, W. R. & Co.--Conn.; Grace MicroFiber. - 5) Metalcrete Industries; Polystrand 1000. - 6) SI Concrete Systems; Fibermix Stealth. - b. Fibrillated Fibers: - 1) Axim Concrete Technologies; Fibrasol F. - 2) FORTA Corporation; Forta. - 3) Euclid Chemical Company (The); Fiberstrand F. - 4) Grace, W. R. & Co.--Conn.; Grace Fibers. - 5) SI Concrete Systems; Fibermesh. ### 2.6 CURING MATERIALS -
A. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. (305 g/sq. m) dry. - B. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet. - C. Water: Potable. - D. Evaporation Retarder: Waterborne, monomolecular film forming; manufactured for application to fresh concrete. - 1. Products: - a. Axim Concrete Technologies; Cimfilm. - b. Burke by Edeco; BurkeFilm. - c. ChemMasters; Spray-Film. - d. Conspec Marketing & Manufacturing Co., Inc.; Aquafilm. - e. Dayton Superior Corporation; Sure Film. - f. Euclid Chemical Company (The); Eucobar. - g. Kaufman Products, Inc.; Vapor Aid. - h. Lambert Corporation; Lambco Skin. - i. L&M Construction Chemicals, Inc.; E-Con. - j. MBT Protection and Repair, ChemRex Inc.; Confilm. - k. Meadows, W. R., Inc.; Sealtight Evapre. - I. Metalcrete Industries; Waterhold. - m. Nox-Crete Products Group, Kinsman Corporation; Monofilm. - n. Sika Corporation, Inc.; SikaFilm. - o. Symons Corporation; Finishing Aid. - p. Vexcon Chemicals, Inc.; Certi-Vex EnvioAssist. - E. Clear Waterborne Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B. ### 1. Products: - a. Anti-Hydro International, Inc.; AH Curing Compound #2 DR WB. - b. Burke by Edoko; Agua Resin Cure. - c. ChemMasters; Safe-Cure Clear. - d. Conspec Marketing & Manufacturing Co., Inc.; W.B. Resin Cure. - e. Dayton Superior Corporation; Day Chem Rez Cure (J-11-W). - f. Euclid Chemical Company (The); Kurez DR VOX. - g. Kaufman Products, Inc.; Thinfilm 420. - h. Lambert Corporation; Aqua Kure-Clear. - i. L&M Construction Chemicals, Inc.; L&M Cure R. - j. Meadows, W. R., Inc.; 1100 Clear. - k. Nox-Crete Products Group, Kinsman Corporation; Resin Cure E. - I. Symons Corporation; Resi-Chem Clear. - m. Tamms Industries Inc.; Horncure WB 30. - n. Unitex; Hydro Cure 309. - o. Vexcon Chemicals, Inc.; Certi-Vex Enviocure 100. ### 2.7 PENETRATING WATER REPELLENTS - A. Silane, Penetrating Water Repellent: Clear, monomeric compound containing 20 percent or more solids of alkyltrialkoxysilanes; with alcohol, mineral spirits, water, or other proprietary solvent carrier; and with 3.3 lb/gal. (400 g/L) or less of VOCs. - 1. Products: - a. Advanced Chemical Technologies, Inc.; Dri-Treat or Sil-Act Multiguard. - b. Anti-Hydro International, Inc.; Aridox 40M. - c. ChemMasters; Aquanil Plus 40. - d. Gemite Products, Inc.; Gem Guard SL. - e. Hydrozo, a division of ChemRex; Enviroseal 20. - f. Nox-Crete Products Group; Stifel-series product appropriate to installation. - g. Pecora Corporation; Klear-Seal 9100 S. - h. Seal-Krete, Inc.; S-K High Solids. - i. Sonneborn Building Products, a division of ChemRex; White Rox 10 VOC. - j. Tamms Industries, Inc.; Baracade Silane 100. - k. Wacker Chemical Corp.; 1316. ## 2.8 RELATED MATERIALS A. Expansion- and Isolation-Joint-Filler Strips: ASTM D 1751, asphalt-saturated cellulosic fiber. - B. Color Pigment: ASTM C 979, synthetic mineral-oxide pigments or colored water-reducing admixtures; color stable, free of carbon black, nonfading, and resistant to lime and other alkalis. - 1. Manufacturers: - a. Bayer Corporation. - b. ChemMasters. - c. Conspec Marketing & Manufacturing Co., Inc. - d. Davis Colors. - e. Elementis Pigments, Inc. - f. Hoover Color Corporation. - g. Lambert Corporation. - h. Scofield, L. M.Company. - i. Solomon Colors. - 2. Color: As selected by Architect from manufacturer's full range. - C. Bonding Agent: ASTM C 1059, Type II, non-redispersible, acrylic emulsion or styrene butadiene. - D. Epoxy Bonding Adhesive: ASTM C 881, two-component epoxy resin, capable of humid curing and bonding to damp surfaces, of class suitable for application temperature and of grade to requirements, and as follows: - 1. Types IV and V, load bearing, for bonding hardened or freshly mixed concrete to hardened concrete. - E. Chemical Surface Retarder: Water-soluble, liquid-set retarder with color dye, for horizontal concrete surface application, capable of temporarily delaying final hardening of concrete to a depth of 1/8 to 1/4 inch (3 to 6 mm). - 1. Products: - a. Burke by Edeco; True Etch Surface Retarder. - b. ChemMasters; Exposee. - c. Conspec Marketing & Manufacturing Co., Inc.; Delay S. - d. Euclid Chemical Company (The); Surface Retarder S. - e. Kaufman Products, Inc.; Expose. - f. Metalcrete Industries; Surftard. - g. Nox-Crete Products Group, Kinsman Corporation; Crete-Nox TA. - h. Scofield, L. M. Company; Lithotex. - i. Sika Corporation, Inc.; Rugasol-S. - j. Vexcon Chemicals, Inc.; Certi-Vex Envioset. ## 2.9 CONCRETE MIXTURES - A. Prepare design mixtures, proportioned according to ACI 301, for each type and strength of normal-weight concrete determined by either laboratory trial mixes or field experience. - 1. Use a qualified independent testing agency for preparing and reporting proposed concrete mixture designs for the trial batch method. - B. Proportion mixtures to provide normal-weight concrete with the following properties: - 1. Compressive Strength (28 Days): 4000 psi (27.6 MPa). - 2. Maximum Water-Cementitious Materials Ratio at Point of Placement: 0.45. - 3. Slump Limit: 4 inches (100 mm), plus or minus 1 inch (25 mm). - C. Add air-entraining admixture at manufacturer's prescribed rate to result in normal-weight concrete at point of placement having an air content as follows: - Air Content: 6 percent plus or minus 1.5 percent for 1-inch (25-mm) nominal maximum aggregate size. - Limit water-soluble, chloride-ion content in hardened concrete to 0.15 percent by weight of cement. - E. Chemical Admixtures: Use admixtures according to manufacturer's written instructions. - 1. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions. - F. Cementitious Materials: Limit percentage, by weight, of cementitious materials other than portland cement according to ACI 301 requirements for concrete exposed to deicing chemicals. - G. Synthetic Fiber: Uniformly disperse in concrete mix at manufacturer's recommended rate, but not less than 1.5 lb/cu. yd. (0.90 kg/cu. m). - H. Color Pigment: Add color pigment to concrete mixture according to manufacturer's written instructions and to result in hardened concrete color consistent with approved mockup. ### 2.10 CONCRETE MIXING - A. Ready-Mixed Concrete: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M and ASTM C 1116. Furnish batch certificates for each batch discharged and used in the Work. - 1. When air temperature is between 85 deg F (30 deg C) and 90 deg F (32 deg C), reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F (32 deg C), reduce mixing and delivery time to 60 minutes. ### PART 3 - EXECUTION # 3.1 EXAMINATION - A. Examine exposed subgrades and subbase surfaces for compliance with requirements for dimensional, grading, and elevation tolerances. - B. Proof-roll prepared subbase surface below concrete pavements with heavy pneumatic-tired equipment to identify soft pockets and areas of excess yielding. - 1. Completely proof-roll subbase in one direction and repeat in perpendicular direction. Limit vehicle speed to 3 mph (5 km/h). - 2. Proof-roll with a loaded 10-wheel tandem-axle dump truck weighing not less than 15 tons (13.6 tonnes). - 3. Subbase with soft spots and areas of pumping or rutting exceeding depth of 1/2 inch (13 mm) require correction according to requirements in Division 31 Section "Earth Moving." C. Proceed with concrete pavement operations only after nonconforming conditions have been corrected and subgrade is ready to receive pavement. #### 3.2 PREPARATION A. Remove loose material from compacted subbase surface immediately before placing concrete. ## 3.3 EDGE FORMS AND SCREED CONSTRUCTION - A. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides for pavement to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement. - B. Clean forms after each use and coat with form-release agent to ensure separation from concrete without damage. #### 3.4 STEEL REINFORCEMENT - A. General: Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement. - B. Clean reinforcement of loose rust and mill scale, earth, ice, or other bond-reducing materials. - C. Arrange, space, and securely tie bars and bar supports to hold reinforcement in position during concrete placement. Maintain minimum cover to reinforcement. - D. Install welded wire reinforcement in lengths as long as practicable. Lap adjoining pieces at least one full mesh, and lace splices with wire. Offset laps of adjoining widths to prevent continuous laps in either direction. - E. Zinc-Coated Reinforcement: Use galvanized steel wire ties to fasten zinc-coated reinforcement. Repair cut and damaged zinc coatings with zinc repair material. - F. Epoxy-Coated Reinforcement: Use epoxy-coated steel wire ties to fasten epoxy-coated reinforcement. Repair cut and damaged epoxy coatings with epoxy repair coating according to ASTM D 3963/D 3963M. - G. Install fabricated bar mats in lengths as long as practicable. Handle units to keep them flat and free of distortions. Straighten bends, kinks, and other irregularities, or replace units as required before placement. Set mats for a minimum 2-inch (50-mm) overlap of adjacent mats. ## 3.5 JOINTS - A. General: Form construction, isolation, and contraction joints and tool edgings true to line with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline, unless otherwise indicated. - 1. When joining existing pavement, place transverse joints to align with previously placed joints, unless otherwise indicated. - B. Construction Joints: Set construction joints at side and end terminations of
pavement and at locations where pavement operations are stopped for more than one-half hour unless pavement terminates at isolation joints. - 1. Continue steel reinforcement across construction joints, unless otherwise indicated. Do not continue reinforcement through sides of pavement strips, unless otherwise indicated. - 2. Provide tie bars at sides of pavement strips where indicated. - 3. Butt Joints: Use bonding agent at joint locations where fresh concrete is placed against hardened or partially hardened concrete surfaces. - 4. Keyed Joints: Provide preformed keyway-section forms or bulkhead forms with keys, unless otherwise indicated. Embed keys at least 1-1/2 inches (38 mm) into concrete. - 5. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or asphalt-coat one-half of dowel length to prevent concrete bonding to one side of joint. - C. Isolation Joints: Form isolation joints of preformed joint-filler strips abutting concrete curbs, catch basins, manholes, inlets, structures, walks, other fixed objects, and where indicated. - 1. Locate expansion joints at intervals of 20 feet, unless otherwise indicated. - 2. Extend joint fillers full width and depth of joint. - 3. Terminate joint filler not less than 1/2 inch (13 mm) or more than 1 inch (25 mm) below finished surface if joint sealant is indicated. - 4. Place top of joint filler flush with finished concrete surface if joint sealant is not indicated. - 5. Furnish joint fillers in one-piece lengths. Where more than one length is required, lace or clip joint-filler sections together. - 6. Protect top edge of joint filler during concrete placement with metal, plastic, or other temporary preformed cap. Remove protective cap after concrete has been placed on both sides of joint. - D. Contraction Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness, as follows: - 1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint with grooving tool to a 1/4-inch (6-mm) radius. Repeat grooving of contraction joints after applying surface finishes. Eliminate groover marks on concrete surfaces. - 2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch- (3-mm-) wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before developing random contraction cracks. - 3. Doweled Contraction Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or asphalt coat one-half of dowel length to prevent concrete bonding to one side of joint. - E. Edging: Tool edges of pavement, gutters, curbs, and joints in concrete after initial floating with an edging tool to a 3/8-inch (10-mm) radius. Repeat tooling of edges after applying surface finishes. Eliminate tool marks on concrete surfaces. ## 3.6 CONCRETE PLACEMENT A. Inspection: Before placing concrete, inspect and complete formwork installation, steel reinforcement, and items to be embedded or cast in. Notify other trades to permit installation of their work. - B. Remove snow, ice, or frost from subbase surface and reinforcement before placing concrete. Do not place concrete on frozen surfaces. - C. Moisten subbase to provide a uniform dampened condition at time concrete is placed. Do not place concrete around manholes or other structures until they are at required finish elevation and alignment. - D. Comply with ACI 301 requirements for measuring, mixing, transporting, and placing concrete. - E. Do not add water to concrete during delivery or at Project site. - F. Do not add water to fresh concrete after testing. - G. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place. - H. Consolidate concrete according to ACI 301 by mechanical vibrating equipment supplemented by hand spading, rodding, or tamping. - 1. Consolidate concrete along face of forms and adjacent to transverse joints with an internal vibrator. Keep vibrator away from joint assemblies, reinforcement, or side forms. Use only square-faced shovels for hand spreading and consolidation. Consolidate with care to prevent dislocating reinforcement, dowels, and joint devices. - I. Place concrete in two operations; strike off initial pour for entire width of placement and to the required depth below finish surface. Lay welded wire fabric or fabricated bar mats immediately in final position. Place top layer of concrete, strike off, and screed. - 1. Remove and replace concrete that has been placed for more than 15 minutes without being covered by top layer, or use bonding agent if approved by Architect. - J. Screed pavement surfaces with a straightedge and strike off. - K. Commence initial floating using bull floats or darbies to impart an open textured and uniform surface plane before excess moisture or bleed water appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading surface treatments. - L. Curbs and Gutters: When automatic machine placement is used for curb and gutter placement, submit revised mix design and laboratory test results that meet or exceed requirements. Produce curbs and gutters to required cross section, lines, grades, finish, and jointing as specified for formed concrete. If results are not approved, remove and replace with formed concrete. - M. Slip-Form Pavers: When automatic machine placement is used for pavement, submit revised mix design and laboratory test results that meet or exceed requirements. Produce pavement to required thickness, lines, grades, finish, and jointing as required for formed pavement. - 1. Compact subbase and prepare subgrade of sufficient width to prevent displacement of paver machine during operations. - N. When adjoining pavement lanes are placed in separate pours, do not operate equipment on concrete until pavement has attained 85 percent of its 28-day compressive strength. - O. Cold-Weather Placement: Comply with ACI 306.1 and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures. - 1. When air temperature has fallen to or is expected to fall below 40 deg F (4.4 deg C), uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50 deg F (10 deg C) and not more than 80 deg F (27 deg C) at point of placement. - 2. Do not use frozen materials or materials containing ice or snow. - 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mix designs. - P. Hot-Weather Placement: Comply with ACI 301 and as follows when hot-weather conditions exist: - 1. Cool ingredients before mixing to maintain concrete temperature below 90 deg F (32 deg C) at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option. - 2. Cover steel reinforcement with water-soaked burlap so steel temperature will not exceed ambient air temperature immediately before embedding in concrete. - 3. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas. #### 3.7 FLOAT FINISHING - A. General: Do not add water to concrete surfaces during finishing operations. - B. Float Finish: Begin the second floating operation when bleed-water sheen has disappeared and concrete surface has stiffened sufficiently to permit operations. Float surface with power-driven floats, or by hand floating if area is small or inaccessible to power units. Finish surfaces to true planes. Cut down high spots and fill low spots. Refloat surface immediately to uniform granular texture. - 1. Burlap Finish: Drag a seamless strip of damp burlap across float-finished concrete, perpendicular to line of traffic, to provide a uniform, gritty texture. - 2. Medium-to-Fine-Textured Broom Finish: Draw a soft bristle broom across float-finished concrete surface perpendicular to line of traffic to provide a uniform, fine-line texture. - 3. Medium-to-Coarse-Textured Broom Finish: Provide a coarse finish by striating float-finished concrete surface 1/16 to 1/8 inch (1.6 to 3 mm) deep with a stiff-bristled broom, perpendicular to line of traffic. - 4. Special surface treatment: Provide special surface treatment(s) and color(s) to match those selected by Architect from samples prepared by tradesman. # C. Finish Schedule: - 1. At all exterior concrete flatwork, provide a fine broom finish to match existing adjacent finish work, as selected by Architect from existing finishes. - 2. At new concrete designated to receive "special surface treatment", match finish selected by Architect from samples/mockups provided by Contractor. ## 3.8 CONCRETE PROTECTION AND CURING - A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. - B. Comply with ACI 306.1 for cold-weather protection. - C. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h (1 kg/sq. m x h) before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing. - Begin curing after finishing concrete but not before free water has disappeared from concrete surface. - E. Curing Methods: Cure concrete by moisture curing, moisture-retaining-cover curing,
curing compound, or a combination of these as follows: - 1. Moist Curing: Keep surfaces continuously moist for not less than seven days with the following materials: - a. Water. - b. Continuous water-fog spray. - c. Absorptive cover, water saturated and kept continuously wet. Cover concrete surfaces and edges with 12-inch (300-mm) lap over adjacent absorptive covers. - Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches (300 mm), and sealed by waterproof tape or adhesive. Immediately repair any holes or tears during curing period using cover material and waterproof tape. - 3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period. ### 3.9 APPLICATION OF WATER REPELLENTS - A. Apply penetrating water repellents to all exterior flatwork. - B. Clean substrate of substances that might interfere with penetration or performance of water repellents. Test for moisture content, according to water-repellent manufacturer's written instructions, to ensure that surface is dry enough. - 1. Cast-in-Place Concrete: Remove oil, curing compounds, laitance, and other substances that could prevent adhesion or penetration of water repellents. - C. Test for pH level, according to water-repellent manufacturer's written instructions, to ensure chemical bond to silicate minerals. - D. Protect adjoining work, including sealant bond surfaces, from spillage or blow-over of water repellent. Cover adjoining and nearby surfaces of aluminum and glass if there is the possibility of water repellent being deposited on surfaces. Cover live plants and grass. - E. Coordination with Sealants: Do not apply water repellent until sealants for joints adjacent to surfaces receiving water-repellent treatment have been installed and cured. - 1. Water-repellent work may precede sealant application only if sealant adhesion and compatibility have been tested and verified using substrate, water repellent, and sealant materials identical to those used in the work. - F. Proceed with installation only after unsatisfactory conditions have been corrected. #### 3.10 PAVEMENT TOLERANCES - A. Comply with tolerances of ACI 117 and as follows: - 1. Elevation: 1/4 inch (6 mm). - 2. Thickness: Plus 3/8 inch (10 mm), minus 1/4 inch (6 mm). - 3. Surface: Gap below 10-foot- (3-m-) long, unleveled straightedge not to exceed 1/4 inch (6 mm). - 4. Lateral Alignment and Spacing of Tie Bars and Dowels: 1 inch (25 mm). - 5. Vertical Alignment of Tie Bars and Dowels: 1/4 inch (6 mm). - 6. Alignment of Tie-Bar End Relative to Line Perpendicular to Pavement Edge: 1/2 inch (13 mm). - 7. Alignment of Dowel-Bar End Relative to Line Perpendicular to Pavement Edge: Length of dowel 1/4 inch per 12 inches (6 mm per 300 mm). - 8. Joint Spacing: 3 inches (75 mm). - 9. Contraction Joint Depth: Plus 1/4 inch (6 mm), no minus. - 10. Joint Width: Plus 1/8 inch (3 mm), no minus. #### 3.11 FIELD QUALITY CONTROL - A. Testing Agency: Owner will engage a qualified independent testing and inspecting agency to perform field tests and inspections and prepare test reports. - B. Testing Services: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements: - 1. Testing Frequency: Obtain at least 1 composite sample for each 100 cu. yd. (76 cu. m) or fraction thereof of each concrete mix placed each day. - When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used. - 2. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mix. Perform additional tests when concrete consistency appears to change. - 3. Air Content: ASTM C 231, pressure method; one test for each composite sample, but not less than one test for each day's pour of each concrete mix. - 4. Concrete Temperature: ASTM C 1064; one test hourly when air temperature is 40 deg F (4.4 deg C) and below and when 80 deg F (27 deg C) and above, and one test for each composite sample. - 5. Compression Test Specimens: ASTM C 31/C 31M; cast and laboratory cure one set of three standard cylinder specimens for each composite sample. - 6. Compressive-Strength Tests: ASTM C 39/C 39M; test 1 specimen at 7 days and 2 specimens at 28 days. - a. A compressive-strength test shall be the average compressive strength from 2 specimens obtained from same composite sample and tested at 28 days. - C. Strength of each concrete mix will be satisfactory if average of any 3 consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi (3.4 MPa). - D. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests. - E. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete. - F. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect. - G. Remove and replace concrete pavement where test results indicate that it does not comply with specified requirements. - H. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements. # 3.12 REPAIRS AND PROTECTION - A. Remove and replace concrete pavement that is broken, damaged, or defective or that does not comply with requirements in this Section. - B. Drill test cores, where directed by Architect, when necessary to determine magnitude of cracks or defective areas. Fill drilled core holes in satisfactory pavement areas with portland cement concrete bonded to pavement with epoxy adhesive. - C. Protect concrete from damage. Exclude traffic from pavement for at least 14 days after placement. When construction traffic is permitted, maintain pavement as clean as possible by removing surface stains and spillage of materials as they occur. - D. Maintain concrete pavement free of stains, discoloration, dirt, and other foreign material. Sweep concrete pavement not more than two days before date scheduled for Substantial Completion inspections. END OF SECTION 321313 BLANK PAGE ## SECTION 321373 - CONCRETE PAVING JOINT SEALANTS #### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following: - 1. Expansion and contraction joints within cement concrete pavement. - 2. Joints between cement concrete and asphalt pavement. - B. Related Sections include the following: - 1. Division 07 Section "Joint Sealants" for sealing nontraffic and traffic joints in locations not specified in this Section. - 2. Division 32 Section "Asphalt Paving" for constructing joints between concrete and asphalt pavement. - 3. Division 32 Section "Concrete Paving" for constructing joints in concrete pavement. ### 1.3 SUBMITTALS - A. Product Data: For each joint-sealant product indicated. - B. Samples for Verification: For each type and color of joint sealant required. Install joint-sealant samples in 1/2-inch- (13-mm-) wide joints formed between two 6-inch- (150-mm-) long strips of material matching the appearance of exposed surfaces adjacent to joint sealants. - C. Product Certificates: For each type of joint sealant and accessory, signed by product manufacturer. - D. Qualification Data: For testing agency. - E. Compatibility and Adhesion Test Reports: From sealant manufacturer, indicating the following: - Materials forming joint substrates and joint-sealant backings have been tested for compatibility and adhesion with joint sealants. - 2. Interpretation of test results and written recommendations for primers and substrate preparation needed for adhesion. - F. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for sealants. ## 1.4 QUALITY ASSURANCE - A. Installer Qualifications: An employer of workers trained and approved by manufacturer. - B. Source Limitations: Obtain each type of joint sealant through one source from a single manufacturer. - C. Preconstruction Compatibility and Adhesion Testing: Submit to joint-sealant manufacturers, for testing indicated below, samples of materials that will contact or affect joint sealants. - Use manufacturer's standard test methods to determine whether priming and other specific joint preparation techniques are required to obtain rapid, optimum adhesion of joint sealants to joint substrates. - 2. Submit not fewer than 2 pieces of each type of material, including joint substrates, shims, joint-sealant backings, secondary seals, and miscellaneous materials. - 3. Schedule sufficient time for testing and analyzing results to prevent delaying the
Work. - For materials failing tests, obtain joint-sealant manufacturer's written instructions for corrective measures including use of specially formulated primers. - 5. Testing will not be required if joint-sealant manufacturers submit joint preparation data that are based on previous testing of current sealant products for adhesion to, and compatibility with, joint substrates and other materials matching those submitted. - D. Product Testing: Obtain test results for "Product Test Reports" Paragraph in "Submittals" Article from a qualified testing agency based on testing of current sealant products within a 36-month period preceding the Notice to Proceed of the Project. - 1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C 1021 for testing indicated, as documented according to ASTM E 548. ## 1.5 DELIVERY, STORAGE, AND HANDLING - A. Deliver materials to Project site in original unopened containers or bundles with labels indicating manufacturer, product name and designation, color, expiration date, pot life, curing time, and mixing instructions for multicomponent materials. - B. Store and handle materials to comply with manufacturer's written instructions to prevent their deterioration or damage due to moisture, high or low temperatures, contaminants, or other causes. ## 1.6 PROJECT CONDITIONS - A. Do not proceed with installation of joint sealants under the following conditions: - When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer. - 2. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer or are below 40 deg F (4.4 deg C). - 3. When joint substrates are wet or covered with frost. - 4. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated. - Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates. #### PART 2 - PRODUCTS ### 2.1 MANUFACTURERS - A. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, products listed in other Part 2 articles. - B. Products: Subject to compliance with requirements, provide one of the products listed in other Part 2 articles. ## 2.2 MATERIALS, GENERAL - A. Compatibility: Provide joint sealants, backing materials, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer based on testing and field experience. - B. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer's full range. ## 2.3 COLD-APPLIED JOINT SEALANTS - A. Multicomponent Jet-Fuel-Resistant Sealant for Concrete: Pourable, chemically curing elastomeric formulation complying with the following requirements for formulation and with ASTM C 920 for type, grade, class, and uses indicated: - 1. Urethane Formulation: Type M; Grade P; Class 12-1/2; Uses T, M, and, as applicable to joint substrates indicated, O. - a. Available Products: - 1) Pecora Corporation; Urexpan NR-300. - 2. Coal-Tar-Modified Polymer Formulation: Type M; Grade P; Class 25; Uses T and, as applicable to joint substrates indicated, O. - a. Available Products: - 1) Meadows, W. R., Inc.; Sealtight Gardox. - 3. Bitumen-Modified Urethane Formulation: Type M; Grade P; Class 25; Uses T, M, and, as applicable to joint substrates indicated, O. - a. Available Products: - 1) Tremco Sealant/Waterproofing Division; Vulkem 202. - B. Single-Component Jet-Fuel-Resistant Urethane Sealant for Concrete: Single-component, pourable, coal-tar-modified, urethane formulation complying with ASTM C 920 for Type S; Grade P; Class 25; Uses T, M, and, as applicable to joint substrates indicated, O. - 1. Available Products: - a. Sonneborn, Div. of ChemRex, Inc.; Sonomeric 1. - C. Type NS Silicone Sealant for Concrete: Single-component, low-modulus, neutral-curing, nonsag silicone sealant complying with ASTM D 5893 for Type NS. - 1. Available Products: - a. Crafco Inc.; RoadSaver Silicone. - b. Dow Corning Corporation; 888. - D. Type SL Silicone Sealant for Concrete and Asphalt: Single-component, low-modulus, neutral-curing, self-leveling silicone sealant complying with ASTM D 5893 for Type SL. - 1. Available Products: - a. Crafco Inc.; RoadSaver Silicone SL. - b. Dow Corning Corporation; 890-SL. - E. Multicomponent Low-Modulus Sealant for Concrete and Asphalt: Proprietary formulation consisting of reactive petropolymer and activator components producing a pourable, self-leveling sealant. - 1. Available Products: - a. Meadows, W. R., Inc.; Sof-Seal. ### 2.4 HOT-APPLIED JOINT SEALANTS - A. Jet-Fuel-Resistant Elastomeric Sealant for Concrete: Single-component formulation complying with ASTM D 3569. - 1. Available Products: - a. Crafco Inc.; Superseal 444/777. - b. Meadows, W. R., Inc.; Poly-Jet 3569. - B. Jet-Fuel-Resistant Sealant for Concrete and Tar Concrete: Single-component formulation complying with ASTM D 3581. - 1. Available Products: - a. Crafco Inc.; Superseal 1614A. - b. Meadows, W. R., Inc.; Poly-Jet 1614. - c. Meadows, W. R., Inc.; Poly-Jet 3406. - d. Meadows, W. R., Inc.; Poly-Jet 3569. - C. Elastomeric Sealant for Concrete: Single-component formulation complying with ASTM D 3406. - 1. Available Products: - a. Crafco Inc.; Superseal 444/777. - b. Meadows, W. R., Inc.; Poly-Jet 3406. - D. Sealant for Concrete and Asphalt: Single-component formulation complying with ASTM D 3405. - 1. Available Products: - a. Koch Materials Company; Product No. 9005. - b. Koch Materials Company; Product No. 9030. - c. Meadows, W. R., Inc.; Sealtight Hi-Spec. ## 2.5 JOINT-SEALANT BACKER MATERIALS - A. General: Provide joint-sealant backer materials that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by joint-sealant manufacturer based on field experience and laboratory testing. - B. Round Backer Rods for Cold- and Hot-Applied Sealants: ASTM D 5249, Type 1, of diameter and density required to control sealant depth and prevent bottom-side adhesion of sealant. - C. Backer Strips for Cold- and Hot-Applied Sealants: ASTM D 5249; Type 2; of thickness and width required to control sealant depth, prevent bottom-side adhesion of sealant, and fill remainder of joint opening under sealant. D. Round Backer Rods for Cold-Applied Sealants: ASTM D 5249, Type 3, of diameter and density required to control sealant depth and prevent bottom-side adhesion of sealant. #### 2.6 PRIMERS A. Primers: Product recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests. ### PART 3 - EXECUTION #### 3.1 EXAMINATION - A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance. - 1. Proceed with installation only after unsatisfactory conditions have been corrected. ### 3.2 PREPARATION - A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions. - B. Joint Priming: Prime joint substrates where indicated or where recommended in writing by joint-sealant manufacturer, based on preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces. ## 3.3 INSTALLATION OF JOINT SEALANTS - A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply. - B. Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions indicated. - C. Install backer materials of type indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability. - 1. Do not leave gaps between ends of backer materials. - 2. Do not stretch, twist, puncture, or tear backer materials. - 3. Remove absorbent backer materials that have become wet before sealant application and replace them with dry materials. - D. Install sealants using proven techniques that comply with the following and at the same time backings are installed: - 1. Place sealants so they directly contact and fully wet joint substrates. - 2. Completely fill recesses provided for each joint configuration. - 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability. - E. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified below to form smooth, uniform beads of configuration indicated: to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint. - 1. Remove excess sealants from surfaces adjacent to joint. - 2. Use tooling agents that are approved in writing by joint-sealant manufacturer and that do not discolor sealants or adjacent surfaces. - F. Provide joint configuration to comply with joint-sealant manufacturer's written instructions, unless otherwise indicated. - G. Provide recessed joint configuration for silicone sealants of recess depth and at locations indicated. ## 3.4 CLEANING A. Clean off excess sealants or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved by
manufacturers of joint sealants and of products in which joints occur. # 3.5 PROTECTION A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately and replace with joint sealant so installations with repaired areas are indistinguishable from the original work. ## SECTION 15052 - COMMON WORK RESULTS FOR PLUMBING #### PART 1 - GENERAL #### 1.1 SUMMARY - A. This Section includes the following: - 1. Piping materials and installation instructions common to most piping systems. - 2. Dielectric fittings. - 3. Sleeves. - 4. Escutcheons. - 5. Grout. - 6. Plumbing demolition. - 7. Equipment installation requirements common to equipment sections. - 8. Supports and anchorages. #### 1.2 DEFINITIONS - A. Finished Spaces: Spaces other than plumbing and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels. - B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and plumbing equipment rooms. - C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations. - D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases. - E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters. ## 1.3 SUBMITTALS A. Welding certificates. # 1.4 QUALITY ASSURANCE - A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel." - B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications." - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping." - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current. #### PART 2 - PRODUCTS ## 2.1 PIPE, TUBE, AND FITTINGS - A. Refer to individual Division 15 piping Sections for pipe, tube, and fitting materials and joining methods. - B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings. #### 2.2 JOINING MATERIALS - A. Refer to individual Division 15 piping Sections for special joining materials not listed below. - B. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated. - C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813. - D. Brazing Filler Metals: AWS A5.8, BCuP Series or BAg1, unless otherwise indicated. - E. Welding Filler Metals: Comply with AWS D10.12. ## 2.3 DIELECTRIC FITTINGS - A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials. - B. Insulating Material: Suitable for system fluid, pressure, and temperature. - C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F. - D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures. - E. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F. - F. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F. #### 2.4 SLEEVES - A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint. - B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends. - C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated. - D. Molded PVC: Permanent, with nailing flange for attaching to wooden forms. - E. PVC Pipe: ASTM D 1785, Schedule 40. F. Molded PE: Reusable, PE, tapered-cup shaped, and smooth-outer surface with nailing flange for attaching to wooden forms. #### 2.5 ESCUTCHEONS - A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening. - B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish. - C. One-Piece, Cast-Brass Type: With set screw. - 1. Finish: Polished chrome-plated. - D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw. - 1. Finish: Polished chrome-plated. ### 2.6 GROUT - A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout. - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications. - 2. Design Mix: 5000-psi, 28-day compressive strength. - 3. Packaging: Premixed and factory packaged. ## PART 3 - EXECUTION # 3.1 PLUMBING DEMOLITION - A. Refer to Division 1 Sections "Cutting and Patching" and "Selective Demolition" for general demolition requirements and procedures. - B. Disconnect, demolish, and remove plumbing systems, equipment, and components indicated to be removed. - 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material. - 2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material. - 3. Equipment to Be Removed: Disconnect and cap services and remove equipment. - 4. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational. - 5. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner. - C. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality. ## 3.2 PIPING SYSTEMS - COMMON REQUIREMENTS A. Install piping according to the following requirements and Division 15 Sections specifying piping systems. - B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings. - Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas. - D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise. - E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal. - F. Install piping to permit valve servicing. - G. Install piping at indicated slopes. - H. Install piping free of sags and bends. - I. Install fittings for changes in direction and branch connections. - J. Install piping to allow application of insulation. - K. Select system components with pressure rating equal to or greater than system operating pressure. - L. Install escutcheons for penetrations of walls, ceilings, and floors. - M. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs. - N. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 7 Section "Through-Penetration Firestop Systems" for materials. - O. Verify final equipment locations for roughing-in. - P. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements. ## 3.3 PIPING JOINT CONSTRUCTION - A. Join pipe and fittings according to the following requirements and Division 15 Sections specifying piping systems. - B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe. - C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly. - D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32. - E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8. - F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows: - Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified. - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds. - G. Welded Joints:
Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article. - H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads. #### 3.4 PIPING CONNECTIONS - A. Make connections according to the following, unless otherwise indicated: - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment. - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment. - Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals. - Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals. ## 3.5 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS - A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated. - B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated. - C. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations. - D. Install equipment to allow right of way for piping installed at required slope. ### 3.6 CONCRETE BASES - A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project. - 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit. - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base. - 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor. - 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded. - 5. Install anchor bolts to elevations required for proper attachment to supported equipment. - 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions. - 7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 3 Section "Cast-in-Place Concrete." ## 3.7 ERECTION OF METAL SUPPORTS AND ANCHORAGES - A. Refer to Division 5 Section "Metal Fabrications" for structural steel. - B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment. - C. Field Welding: Comply with AWS D1.1. # 3.8 GROUTING - A. Mix and install grout for plumbing equipment base bearing surfaces, pump and other equipment base plates, and anchors. - B. Clean surfaces that will come into contact with grout. - C. Provide forms as required for placement of grout. - D. Avoid air entrapment during placement of grout. - E. Place grout, completely filling equipment bases. - F. Place grout on concrete bases and provide smooth bearing surface for equipment. - G. Place grout around anchors. - H. Cure placed grout. ## SECTION 15053 - COMMON WORK RESULTS FOR HVAC #### PART 1 - GENERAL #### 1.1 SUMMARY - A. This Section includes the following: - 1. Equipment installation requirements common to equipment sections. - 2. Supports and anchorages. # 1.2 DEFINITIONS - A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels. - B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms. - C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations. - D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases. - E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters. #### 1.3 SUBMITTALS Welding certificates. ### 1.4 QUALITY ASSURANCE - A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code---Steel." - B. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements. ## PART 2 - PRODUCTS # 2.1 GROUT A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout. - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications. - 2. Design Mix: 5000-psi, 28-day compressive strength. - 3. Packaging: Premixed and factory packaged. ## PART 3 - EXECUTION ## 3.1 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS - A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated. - B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated. - C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations. - D. Install equipment to allow right of way for piping installed at required slope. ## 3.2 ERECTION OF METAL SUPPORTS AND ANCHORAGES - A. Refer to Division 5 Section "Metal Fabrications" for structural steel. - B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment. - C. Field Welding: Comply with AWS D1.1. ### 3.3 GROUTING - A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors. - B. Clean surfaces that will come into contact with grout. - C. Provide forms as required for placement of grout. - D. Avoid air entrapment during placement of grout. - E. Place grout, completely filling equipment bases. - F. Place grout on concrete bases and provide smooth bearing surface for equipment. - G. Place grout around anchors. - H. Cure placed grout. ## SECTION 15058 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT #### PART 1 - GENERAL #### 1.1 SUMMARY A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation. #### 1.2 COORDINATION - A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following: - 1. Motor controllers. - 2. Torque, speed, and horsepower requirements of the load. - 3. Ratings and characteristics of supply circuit and required control sequence. - 4. Ambient and environmental conditions of installation location. #### PART 2 - PRODUCTS ## 2.1 GENERAL MOTOR REQUIREMENTS - A. Comply with requirements in this Section except when stricter requirements are specified in HVAC equipment schedules or Sections. - B. Comply with NEMA MG 1 unless otherwise indicated. # 2.2 MOTOR CHARACTERISTICS - A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 5000 feet above sea level. - B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor. ## 2.3 POLYPHASE MOTORS - A. Description: NEMA MG 1, Design B, medium induction motor. - B. Efficiency: Energy efficient, as defined in NEMA MG 1. - C. Service Factor: 1.15. - D. Rotor: Random-wound, squirrel cage. - E. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading. - F. Temperature Rise: Match insulation rating. G. Insulation: Class F. ## 2.4 SINGLE-PHASE MOTORS - A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application: - 1. Permanent-split capacitor. - 2. Split phase. - 3. Capacitor start, inductor run. - 4. Capacitor start, capacitor run. - B. Multispeed Motors: Variable-torque, permanent-split-capacitor type. - C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading. - D. Motors 1/20 HP and Smaller: Shaded-pole type. - E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range. PART 3 - EXECUTION (Not Applicable) ## SECTION 15061 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT #### PART 1 - GENERAL #### 1.1 SUMMARY #### A. Section Includes: -
1. Metal pipe hangers and supports. - 2. Thermal-hanger shield inserts. - 3. Fastener systems. - 4. Equipment supports. #### 1.2 PERFORMANCE REQUIREMENTS - A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated. - B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7. - Design supports for multiple pipes capable of supporting combined weight of supported systems, system contents, and test water. - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components. - 3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction. ## 1.3 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components: - 1. Trapeze pipe hangers. - 2. Equipment supports. - C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation. - D. Welding certificates. ## 1.4 QUALITY ASSURANCE - A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel." - B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code. #### PART 2 - PRODUCTS #### 2.1 METAL PIPE HANGERS AND SUPPORTS - A. Carbon-Steel Pipe Hangers and Supports: - 1. Description: MSS SP-58. Types 1 through 58. factory-fabricated components. - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped. - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner. - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping. - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel. # B. Copper Pipe Hangers: - 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components. - 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-coated steel. ## 2.2 THERMAL-HANGER SHIELD INSERTS - A. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier. - B. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe. - C. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe. - D. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature. ## 2.3 FASTENER SYSTEMS - A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pullout, tension, and shear capacities appropriate for supported loads and building materials where used. - B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used. # 2.4 EQUIPMENT SUPPORTS A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes. #### 2.5 MISCELLANEOUS MATERIALS - A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized. - B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications. - 1. Properties: Nonstaining, noncorrosive, and nongaseous. 2. Design Mix: 5000-psi, 28-day compressive strength. #### PART 3 - EXECUTION #### 3.1 HANGER AND SUPPORT INSTALLATION - A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure. - B. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping. - C. Fastener System Installation: - Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual. - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions. - D. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories. - E. Equipment Support Installation: Fabricate from welded-structural-steel shapes. - F. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units. - G. Install lateral bracing with pipe hangers and supports to prevent swaying. - H. Install building attachments within concrete slabs or attach to structural steel. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts. - I. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment. - J. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping. - K. Insulated Piping: - 1. Attach clamps and spacers to piping. - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation. - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert. - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping. - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation. - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers. - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees. - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers. - 4. Shield Dimensions for Pipe: Not less than the following: - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick. - 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield. - 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation. # 3.2 EQUIPMENT SUPPORTS - A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor. - B. Grouting: Place grout under supports for equipment and make bearing surface smooth. - C. Provide lateral bracing, to prevent swaying, for equipment supports. #### 3.3 METAL FABRICATIONS - A. Cut, drill, and fit miscellaneous metal fabrications for equipment supports. - B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations. - C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following: - Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals. - 2. Obtain fusion without undercut or overlap. - 3. Remove welding flux immediately. - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours. ## 3.4 ADJUSTING - A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe. - B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches. # 3.5 HANGER AND SUPPORT SCHEDULE - A. Specific hanger and support requirements are in Sections specifying piping systems and equipment. - B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections. - C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish. - D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing. - E. Use carbon-steel pipe hangers and supports and attachments for general service applications. - F. Use copper-plated pipe hangers and copper attachments for copper piping and tubing. - G. Use thermal-hanger shield inserts for insulated piping and tubing. - H. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types: - Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30. - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up
to 4 inches of insulation. - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation. - Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8. - 5. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30. - I. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types: - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24. - Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps. - J. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types: - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads. - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations. - K. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types: - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling. - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape. - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles. - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams. - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large. - 6. C-Clamps (MSS Type 23): For structural shapes. - 7. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads: - a. Light (MSS Type 31): 750 lb. - b. Medium (MSS Type 32): 1500 lb. - c. Heavy (MSS Type 33): 3000 lb. - 8. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams. - 9. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required. - L. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types: - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation. - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation. - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe. - M. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections. - N. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction. # SECTION 15062 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT ## PART 1 - GENERAL #### 1.1 SUMMARY #### A. Section Includes: - 1. Fastener systems. - 2. Equipment supports. # 1.2 PERFORMANCE REQUIREMENTS - A. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7. - 1. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components. - 2. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction. #### 1.3 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components: - 1. Equipment supports. - C. Welding certificates. ## 1.4 QUALITY ASSURANCE - A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel." - B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code. #### PART 2 - PRODUCTS ## 2.1 FASTENER SYSTEMS - A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pullout, tension, and shear capacities appropriate for supported loads and building materials where used. - B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used. ### 2.2 EQUIPMENT SUPPORTS A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes. ## 2.3 MISCELLANEOUS MATERIALS - A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized. - B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications. - 1. Properties: Nonstaining, noncorrosive, and nongaseous. - 2. Design Mix: 5000-psi, 28-day compressive strength. ### PART 3 - EXECUTION #### 3.1 EQUIPMENT SUPPORTS - A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor. - B. Grouting: Place grout under supports for equipment and make bearing surface smooth. - C. Provide lateral bracing, to prevent swaying, for equipment supports. ### 3.2 METAL FABRICATIONS - A. Cut, drill, and fit miscellaneous metal fabrications for equipment supports. - B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations. - C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following: - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals. - 2. Obtain fusion without undercut or overlap. - 3. Remove welding flux immediately. - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours. # 3.3 ADJUSTING A. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches. ## SECTION 15074 - VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT #### PART 1 - GENERAL #### 1.1 SUMMARY - A. This Section includes the following: - 1. Restraining braces and cables. # 1.2 PERFORMANCE REQUIREMENTS - A. Seismic-Restraint Loading: - 1. Site Class as Defined in the IBC: D. - 2. Assigned Seismic Use Group or Building Category as Defined in the IBC: II. - 3. Design Spectral Response Acceleration at Short Periods (0.2 Second): 0.79. - 4. Design Spectral Response Acceleration at 1-Second Period: 0.45. ## 1.3 SUBMITTALS - A. Product Data: For each product indicated. - B. Delegated-Design Submittal: For vibration isolation and seismic-restraint calculations and details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation. - C. Welding certificates. - D. Qualification Data: For professional engineer. - E. Field quality-control test reports. ## 1.4 QUALITY ASSURANCE - A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent. - B. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel." - C. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer. #### PART 2 - PRODUCTS #### 2.1 SEISMIC-RESTRAINT DEVICES - A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - 1. Amber/Booth Company, Inc. - 2. California Dynamics Corporation. - 3. Cooper B-Line, Inc.; a division of Cooper Industries. - 4. Hilti, Inc. - 5. Kinetics Noise Control. - 6. Loos & Co.; Cableware Division. - 7. Mason Industries. - 8. TOLCO Incorporated; a brand of NIBCO INC. - 9. Unistrut; Tyco International, Ltd. - B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an agency acceptable to authorities having jurisdiction. - 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected. - C. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces. - D. Restraint Cables: ASTM A 603 galvanized-steel cables with end connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; and with a minimum of two clamping bolts for cable
engagement. - E. Hanger Rod Stiffener: Reinforcing steel angle clamped to hanger rod. - F. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs. - G. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face. - H. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter. #### PART 3 - EXECUTION ### 3.1 APPLICATIONS - A. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces. - B. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits. ### 3.2 VIBRATION-CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION A. Comply with requirements in Division 7 Section "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations. ## B. Equipment Restraints: - 1. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch. - 2. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component. - C. Install cables so they do not bend across edges of adjacent equipment or building structure. - D. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component. - E. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base. - F. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members. #### G. Drilled-in Anchors: - Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines. - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength. - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened. - 4. Set anchors to manufacturer's recommended torque, using a torque wrench. - 5. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications. # 3.3 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Division 15 Section "Hydronic Piping" for piping flexible connections. #### 3.4 FIELD QUALITY CONTROL - A. Perform tests and inspections. - B. Tests and Inspections: - 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction. - Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice. - Obtain Architect's approval before transmitting test loads to structure. Provide temporary loadspreading members. - 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect. - 5. Test to 90 percent of rated proof load of device. - 6. Measure isolator restraint clearance. - 7. Measure isolator deflection. - 8. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved. - C. Remove and replace malfunctioning units and retest as specified above. - D. Prepare test and inspection reports. ## 3.5 ADJUSTING - A. Adjust isolators after piping system is at operating weight. - B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation. - C. Adjust active height of spring isolators. - D. Adjust restraints to permit free movement of equipment within normal mode of operation. ### SECTION 15076 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT #### PART 1 - GENERAL #### 1.1 SUMMARY - A. Section Includes: - 1. Pipe labels. # 1.2 SUBMITTAL A. Product Data: For each type of product indicated. #### PART 2 - PRODUCTS #### 2.1 PIPE LABELS - A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction. - B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive. - C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing. - D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction. - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction. - 2. Lettering Size: At least 1-1/2 inches high. ## PART 3 - EXECUTION ### 3.1 PREPARATION A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants. # 3.2 PIPE LABEL INSTALLATION - A. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows: - 1. Near each valve and control device. - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch. - 3. - Near penetrations through walls, floors, ceilings, and inaccessible enclosures. At access doors, manholes, and similar access points that permit view of concealed piping. 4. - Near major equipment items and other points of origination and termination. - Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of 6. congested piping and equipment. - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels. ### SECTION 15077 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT #### PART 1 - GENERAL #### 1.1 SUMMARY - A. Section Includes: - 1. Equipment labels. ### 1.2 SUBMITTAL A. Product Data: For each type of product indicated. #### PART 2 - PRODUCTS #### 2.1 EQUIPMENT LABELS - A. Plastic Labels for Equipment: - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware. - 2. Letter Color: Black. - 3. Background Color: White Yellow Insert color. - 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F. - 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch. - 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering. - 7. Fasteners: Stainless-steel rivets or self-tapping screws. - 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate. - B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. - C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data. ### PART 3 - EXECUTION ### 3.1 PREPARATION A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants. - 3.2 EQUIPMENT LABEL INSTALLATION - A. Install or permanently fasten labels on each major item of mechanical equipment. - B. Locate equipment labels where accessible and visible. #### SECTION 15082 - PLUMBING INSULATION #### PART 1 - GENERAL #### 1.1 SUMMARY - A. Section Includes: - 1. Insulation Materials: - a. Mineral fiber. - 2. Adhesives. - 3. Sealants. - 4. Field-applied jackets. - 5. Tapes. - B. Related Sections include the following: - 1. Division 15 Section "HVAC Insulation." #### 1.2 SUBMITTALS - A. Product Data: For
each type of product indicated. - B. Field quality-control reports. ### 1.3 QUALITY ASSURANCE - A. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency. - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less. # PART 2 - PRODUCTS # 2.1 INSULATION MATERIALS - A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied. - B. Products shall not contain asbestos, lead, mercury, or mercury compounds. - C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871. - D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795. - E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process. - F. High-Temperature, Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type III, without factory-applied jacket. - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. Fibrex Insulations Inc.; FBX. - b. Johns Manville; 1000 Series Spin-Glas. - c. Owens Corning; High Temperature Industrial Board Insulations. - d. Rock Wool Manufacturing Company; Delta Board. - e. Roxul Inc.; Roxul RW. - f. Thermafiber; Thermafiber Industrial Felt. - G. Mineral-Fiber, Preformed Pipe Insulation: - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. Fibrex Insulations Inc.; Coreplus 1200. - b. Johns Manville; Micro-Lok. - c. Knauf Insulation; 1000 Pipe Insulation. - d. Manson Insulation Inc.; Alley-K. - e. Owens Corning; Fiberglas Pipe Insulation. - 2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article. ## 2.2 ADHESIVES - A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated. - B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A. - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. Childers Products, Division of ITW; CP-82. - b. Foster Products Corporation, H. B. Fuller Company; 85-20. - c. ITW TACC, Division of Illinois Tool Works; S-90/80. - d. Marathon Industries. Inc.: 225. - e. Mon-Eco Industries, Inc.; 22-25. - C. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints. - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. Childers Products. Division of ITW: CP-82. - b. Foster Products Corporation, H. B. Fuller Company; 85-20. - c. ITW TACC, Division of Illinois Tool Works; S-90/80. - d. Marathon Industries, Inc.; 225. - e. Mon-Eco Industries, Inc.; 22-25. #### 2.3 SEALANTS #### A. Joint Sealants: - 1. Materials shall be compatible with insulation materials, jackets, and substrates. - 2. Permanently flexible, elastomeric sealant. - 3. Service Temperature Range: Minus 100 to plus 300 deg F. - 4. Color: White or gray. - 5. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24). - B. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants: - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. Childers Products, Division of ITW; CP-76. - 2. Materials shall be compatible with insulation materials, jackets, and substrates. - 3. Fire- and water-resistant, flexible, elastomeric sealant. - 4. Service Temperature Range: Minus 40 to plus 250 deg F. - 5. Color: White. - 6. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24). ### 2.4 TAPES - A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136. - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0835. - b. Compac Corp.; 104 and 105. - c. Ideal Tape Co., Inc., an American Biltrite Company; 428 AWF ASJ. - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ. - 2. Width: 3 inches. - 3. Thickness: 11.5 mils. - 4. Adhesion: 90 ounces force/inch in width. - 5. Elongation: 2 percent. - 6. Tensile Strength: 40 lbf/inch in width. - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape. ### PART 3 - EXECUTION ### 3.1 PREPARATION A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application. - B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation. - C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainlesssteel surfaces, use demineralized water. #### 3.2 GENERAL INSTALLATION REQUIREMENTS - A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment and piping including fittings, valves, and specialties. - B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment and pipe system as specified in insulation system schedules. - C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state. - D. Install insulation with longitudinal seams at top and bottom of horizontal runs. - E. Install multiple layers of insulation with longitudinal and end seams staggered. - F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties. - G. Keep insulation materials dry during application and finishing. - H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer. - I. Install insulation with least number of joints practical. - J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic. - 1. Install insulation continuously through hangers and around anchor attachments. - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic. - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer. - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield. - K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses. - L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness. - M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement. - N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints. - O. For above ambient services, do not install insulation to the following: - 1. Vibration-control devices. - 2. Testing agency labels and stamps. - 3. Nameplates and data plates. - 4. Manholes. - 5. Handholes. - 6. Cleanouts. ### 3.3 PENETRATIONS A. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions. ### 3.4 GENERAL PIPE INSULATION INSTALLATION - A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles. - B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions: - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated. - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly
against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation. - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive. - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement. - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier. - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour. - 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape. - 9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels. - C. Install removable insulation covers at locations indicated. Installation shall conform to the following: - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation. - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket. - 3. Construct removable valve insulation covers in same manner as for flanges except divide the twopart section on the vertical center line of valve body. - When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish. - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket. ### 3.5 MINERAL-FIBER INSULATION INSTALLATION - A. Insulation Installation on Pipe Flanges: - 1. Install preformed pipe insulation to outer diameter of pipe flange. - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation. - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation. - Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant. - B. Insulation Installation on Pipe Fittings and Elbows: - 1. Install preformed sections of same material as straight segments of pipe insulation when available. - When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands. - C. Insulation Installation on Valves and Pipe Specialties: - 1. Install preformed sections of same material as straight segments of pipe insulation when available. - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body. - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation. - 4. Install insulation to flanges as specified for flange insulation application. ### 3.6 FIELD QUALITY CONTROL - A. Perform tests and inspections. - B. Tests and Inspections: - 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article. - C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements. # 3.7 PIPING INSULATION SCHEDULE, GENERAL - A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option. - B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following: - 1. Drainage piping located in crawl spaces. - 2. Underground piping. - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury. # 3.8 INDOOR PIPING INSULATION SCHEDULE - A. Domestic Cold Water: Insulation shall be the following: - 1. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick. - B. Stormwater and Overflow: Insulation shall be the following: - 1. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick. - C. Roof Drain and Overflow Drain Bodies: Insulation shall be the following: - 1. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick. This page intentionally left blank. ### SECTION 15097 - ESCUTCHEONS FOR PLUMBING PIPING #### PART 1 - GENERAL #### 1.1 SUMMARY - A. Section Includes: - 1. Escutcheons. # 1.2 SUBMITTALS A. Product Data: For each type of product indicated. #### PART 2 - PRODUCTS #### 2.1 ESCUTCHEONS - A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener. - B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners. - C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners. ## PART 3 - EXECUTION ### 3.1 INSTALLATION - A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors. - B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening. - 1. Escutcheons for New Piping: - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type. - b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish. - c. Insulated Piping: One-piece, stamped-steel type. - Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish. - e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish. - f. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished, chrome-plated finish. - g. Bare Piping in Equipment Rooms: One-piece, cast-brass type with polished, chrome-plated finish. - h. Bare Piping in Equipment Rooms: One-piece, stamped-steel type. - C. Install floor plates for piping penetrations of equipment-room floors. - D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening. - 1. New Piping: One-piece, floor-plate type. # 3.2 FIELD QUALITY CONTROL A. Replace broken and damaged escutcheons and floor plates using new materials. ### SECTION 15111 - GENERAL-DUTY VALVES FOR PLUMBING PIPING ## PART 1 - GENERAL #### 1.1 SUMMARY - A. Section Includes: - 1. Bronze ball valves. - B. Related Sections: - 1. Division 15 plumbing piping Sections for specialty valves applicable to those Sections only. - 2. Division 15 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules. #### 1.2 SUBMITTALS A. Product Data: For each type of valve indicated. #### 1.3 QUALITY ASSURANCE - A. ASME Compliance: ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria. - B. NSF Compliance: NSF 61 for valve materials for potable-water service. ### PART 2 - PRODUCTS ## 2.1 GENERAL REQUIREMENTS FOR VALVES - A. Refer to valve schedule articles for applications of valves. - B.
Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures. - C. Valve Sizes: Same as upstream piping unless otherwise indicated. - D. Valve Actuator Types: - 1. Handlever: For quarter-turn valves NPS 6 and smaller except plug valves. - E. Valves in Insulated Piping: With 2-inch stem extensions and the following features: - 1. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation. - F. Valve-End Connections: - 1. Solder Joint: With sockets according to ASME B16.18. - 2. Threaded: With threads according to ASME B1.20.1. ### 2.2 BRONZE BALL VALVES - A. Two-Piece, Regular-Port, Bronze Ball Valves with Bronze Trim: - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - a. American Valve, Inc. - b. Conbraco Industries, Inc.; Apollo Valves. - c. Crane Co.; Crane Valve Group; Jenkins Valves. - d. Crane Co.; Crane Valve Group; Stockham Division. - e. DynaQuip Controls. - f. Hammond Valve. - g. Lance Valves; a division of Advanced Thermal Systems, Inc. - h. Milwaukee Valve Company. - i. NIBCO INC. # 2. Description: - a. Standard: MSS SP-110. - b. SWP Rating: 150 psig. - c. CWP Rating: 600 psig. - d. Body Design: Two piece. - e. Body Material: Bronze. - f. Ends: Threaded. - g. Seats: PTFE or TFE. - h. Stem: Bronze. - i. Ball: Chrome-plated brass. - j. Port: Regular. #### PART 3 - EXECUTION #### 3.1 VALVE INSTALLATION - A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown. - B. Locate valves for easy access and provide separate support where necessary. - C. Install valves in horizontal piping with stem at or above center of pipe. - D. Install valves in position to allow full stem movement. # 3.2 ADJUSTING A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs. ### 3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS - A. If valve applications are not indicated, use the following: - 1. Shutoff Service: Ball, valves. - 2. Throttling Service: [Ball, valves... - B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP class or CWP ratings may be substituted. - C. Select valves, except wafer types, with the following end connections: - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below. - 2. For Steel Piping, NPS 2 and Smaller: Threaded ends. - 3.4 LOW-PRESSURE, COMPRESSED-AIR VALVE SCHEDULE (150 PSIG OR LESS) - A. Pipe: - 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends. - 2. Ball Valves: Two piece, regular port, bronze with bronze trim. - 3.5 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE - A. Pipe: - 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends. - 2. Ball Valves: Two piece, regular port, bronze with bronze trim. This page intentionally left blank. ### SECTION 15140 - DOMESTIC WATER PIPING #### PART 1 - GENERAL #### 1.1 SUMMARY #### A. Section Includes: 1. Under-building slab and aboveground domestic water pipes, tubes, fittings, and specialties inside the building. ### 1.2 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Field quality-control reports. ### 1.3 QUALITY ASSURANCE - A. Piping materials shall bear label, stamp, or other markings of specified testing agency. - B. Comply with NSF 14 for plastic, potable domestic water piping and components. Include marking "NSF-pw" on piping. - C. Comply with NSF 61 for potable domestic water piping and components. ### PART 2 - PRODUCTS ## 2.1 PIPING MATERIALS A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes. ### 2.2 COPPER TUBE AND FITTINGS - A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper. - 1. Cast-Copper Solder-Joint Fittings: ASME B16.18, pressure fittings. - 2. Wrought-Copper Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings. - 3. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends. - Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends. - B. Soft Copper Tube: ASTM B 88, Type K water tube, annealed temper. - 1. Copper Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings. ### 2.3 PIPING JOINING MATERIALS - A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free, unless otherwise indicated; full-face or ring type unless otherwise indicated. - B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated. - C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813. - D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated. #### PART 3 - EXECUTION #### 3.1 EARTHWORK A. Comply with requirements in Division 2 Section "Earthwork" for excavating, trenching, and backfilling. ### 3.2 PIPING INSTALLATION - A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings. - B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook." - C. Install domestic water piping level and plumb. - D. Install seismic restraints on piping. Comply with requirements in Division 15 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices. - E. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas. - F. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise. - G. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space. - H. Install piping adjacent to equipment and specialties to allow service and maintenance. - I. Install piping to permit valve servicing. - J. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure rating used in applications below unless otherwise indicated. - K. Install piping free of sags and bends. - L. Install fittings for changes in direction and branch connections. - M. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty. - N. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 15 Section "Sleeves and Sleeve Seals for Plumbing Piping." - O. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 15 Section "Sleeves and Sleeve Seals for Plumbing Piping." - P. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 15 Section "Escutcheons for Plumbing Piping." #### 3.3 JOINT CONSTRUCTION - A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe. - B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly. - C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows: - 1. Apply appropriate tape or thread compound to external pipe threads. - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. - D. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter. - E. Soldered Joints: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook." - F. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems. ### 3.4 VALVE INSTALLATION A. General-Duty Valves: Comply with requirements in Division 15 Section "General-Duty Valves for Plumbing Piping" for valve installations. ### 3.5 HANGER AND SUPPORT INSTALLATION - A. Comply with requirements in Division 15 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices. - B. Comply with requirements in Division 15 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support products and installation. - 1. Vertical Piping: MSS Type 8 or 42, clamps. - C. Support vertical piping and tubing at base and at each floor. - D. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch. - E. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters: - 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod. - 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod. - 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch
rod. - F. Install supports for vertical copper tubing every 10 feet. - G. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters: - 1. NPS 1-1/4 and Smaller: 84 inches with 3/8-inch rod. - 2. NPS 1-1/2: 108 inches with 3/8-inch rod. - H. Install supports for vertical steel piping every 15 feet. - Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions. #### 3.6 CONNECTIONS - A. Drawings indicate general arrangement of piping, fittings, and specialties. - B. Install piping adjacent to equipment and machines to allow service and maintenance. - C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials. - D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following: - Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Comply with requirements in Division 15 plumbing fixture Sections for connection sizes. - 2. Equipment: Cold- and hot-water supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger. ### 3.7 IDENTIFICATION - A. Identify system components. Comply with requirements in Division 15 Section "Identification for Plumbing Piping and Equipment" for identification materials and installation. - B. Label pressure piping with system operating pressure. #### 3.8 FIELD QUALITY CONTROL - Perform tests and inspections. - B. Piping Inspections: - 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction. - 2. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction: - a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures. - b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements. - 3. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection. - 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction. ### C. Piping Tests: - 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water. - 2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested. - 3. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested. - 4. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired. - 5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained. - 6. Prepare reports for tests and for corrective action required. - D. Domestic water piping will be considered defective if it does not pass tests and inspections. - E. Prepare test and inspection reports. ### 3.9 CLEANING - A. Clean and disinfect potable domestic water piping as follows: - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using. - Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below: - a. Flush piping system with clean, potable water until dirty water does not appear at outlets. - b. Fill and isolate system according to either of the following: - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours. - Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours. - c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time. - d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination. - B. Prepare and submit reports of purging and disinfecting activities. - C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses. ### 3.10 PIPING SCHEDULE - A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated. - B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated. - C. Under-building-slab, domestic water piping, NPS 2 and smaller, shall be the following: - 1. Hard or soft copper tube, ASTM B 88, Type L; wrought-copper solder-joint fittings; and brazed joints. - D. Aboveground domestic water piping, NPS 2 and smaller, shall be the following: - Hard copper tube, ASTM B 88, Type L; cast- or wrought- copper solder-joint fittings; and soldered joints. ### 3.11 VALVE SCHEDULE - A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply: - 1. Shutoff Duty: Use ball valves. - 2. Throttling Duty: Use ball valves. - 3. Drain Duty: Hose-end drain valves. ### SECTION 15145 - DOMESTIC WATER PIPING SPECIALTIES ### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. ### 1.2 SUMMARY - A. This Section includes the following domestic water piping specialties: - Hose bibbs. - 2. Ground hydrants. - 3. Drain valves. ### 1.3 PERFORMANCE REQUIREMENTS A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig, unless otherwise indicated. #### 1.4 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Field quality-control test reports. - C. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals. # 1.5 QUALITY ASSURANCE ### PART 2 - PRODUCTS ### 2.1 HOSE BIBBS ### A. Hose Bibbs: - 1. Standard: ASME A112.18.1 for sediment faucets. - 2. Body Material: Bronze. - 3. Seat: Bronze, replaceable. - 4. Supply Connections: NPS 3/4 threaded or solder-joint inlet. - 5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7. - 6. Pressure Rating: 125 psig. - Vacuum Breaker: Integral nonremovable, drainable, hose-connection vacuum breaker complying with ASSE 1011. ### 2.2 YARD HYDRANTS - A. Nonfreeze, Draining-Type Post Hydrants: - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - a. Woodford Manufacturing Company. - b. Zurn Plumbing Products Group; Light Commercial Operation. - c. Zurn Plumbing Products Group; Specification Drainage Operation. - 2. Standard: ASME A112.21.3M. - 3. Inlet: NPS 1. - 4. Outlet: Garden-hose thread complying with ASME B1.20.7. - 5. Drain: Designed with hole to drain into ground when shut off. - Vacuum Breaker: Nonremovable, drainable, hose-connection vacuum breaker complying with ASSE 1011 or backflow preventer complying with ASSE 1052; and garden-hose thread complying with ASME B1.20.7 on outlet. #### 2.3 DRAIN VALVES - A. Ball-Valve-Type, Hose-End Drain Valves: - 1. Standard: MSS SP-110 for standard-port, two-piece ball valves. - 2. Pressure Rating: 400-psig minimum CWP. - 3. Size: NPS 3/4. - 4. Body: Copper alloy. - Ball: Chrome-plated brass. - 6. Seats and Seals: Replaceable. - 7. Handle: Vinyl-covered steel. - 8. Inlet: Threaded or solder joint. - 9. Outlet: Threaded, short nipple with garden-hose thread complying with ASME B1.20.7 and cap with brass chain. ### PART 3 - EXECUTION ## 3.1 INSTALLATION - A. Refer to Division 15 Section "Basic Mechanical Materials and Methods" for piping joining materials, joint construction, and basic installation requirements. - B. Install freeze-resistant yard hydrants with riser pipe set in concrete or pavement. Do not encase canister in concrete. Install yard hydrants with 1 cu. yd. of crushed gravel around drain hole. Set yard hydrants in concrete paving or in 1 cu. ft. of concrete block at grade. ### 3.2 CONNECTIONS A. Piping installation requirements are specified in other Division 15 Sections. Drawings indicate general arrangement of piping and specialties. ### SECTION 15150 - SANITARY WASTE AND VENT PIPING #### PART 1 - GENERAL #### 1.1 SUMMARY - A. This Section includes the following soil and waste, sanitary drainage and vent piping inside the building: - 1. Pipe, tube, and fittings. - 2. Special pipe fittings. - B. See Division 15 Section "Chemical-Waste Piping" for chemical-waste and vent piping systems. ### 1.2 PERFORMANCE REQUIREMENTS - A. Components and installation shall be capable of withstanding the following minimum working pressure, unless otherwise indicated: - 1. Soil, Waste, and Vent Piping: 10-foot head of water. ### 1.3 SUBMITTALS A. Field quality-control inspection and test reports. #### 1.4 QUALITY ASSURANCE A. Piping materials shall bear label, stamp, or other markings of specified testing agency. ## PART 2 -
PRODUCTS # 2.1 PIPING MATERIALS - A. Hub-and-Spigot, Cast-Iron Pipe and Fittings: ASTM A 74, Service class. - 1. Gaskets: ASTM C 564, rubber. - B. Hubless Cast-Iron Pipe and Fittings: ASTM A 888 or CISPI 301. - 1. Shielded Couplings: ASTM C 1277 assembly of metal shield or housing, corrosion-resistant fasteners, and rubber sleeve with integral, center pipe stop. - a. Standard, Shielded, Stainless-Steel Couplings: CISPI 310, with stainless-steel corrugated shield; stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve. - b. Heavy-Duty, Shielded, Stainless-Steel Couplings: With stainless-steel shield, stainless-steel bands and tightening devices, and ASTM C 564, rubber sleeve. #### PART 3 - EXECUTION ### 3.1 PIPING APPLICATIONS - A. Special pipe fittings with pressure ratings at least equal to piping pressure ratings may be used in applications below, unless otherwise indicated. - B. Flanges and unions may be used on aboveground pressure piping, unless otherwise indicated. - C. Aboveground, soil, waste, and vent piping NPS 4 and smaller shall beany of the following: - 1. Service class, hub-and-spigot, cast-iron soil pipe and fittings; gaskets; and compression joints. - 2. Hubless cast-iron soil pipe and fittings; standard, shielded, stainless-steel couplings; and hubless-coupling joints. - D. Underground, soil, waste, and vent piping NPS 4 and smaller shall be any of the following: - 1. Service class, hub-and-spigot, cast-iron soil pipe and fittings; gaskets; and compression joints. - 2. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and hubless-coupling joints. ### 3.2 PIPING INSTALLATION - A. Sanitary sewer piping outside the building is specified in Division 2 Section "Sanitary Sewerage." - B. Basic piping installation requirements are specified in Division 15 Section "Basic Mechanical Materials and Methods." - C. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers. - D. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings." - E. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if 2 fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited. - F. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed. - G. Install soil and waste drainage and vent piping at the following minimum slopes, unless otherwise indicated: - 1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger. - 2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow. - 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack. - H. Sleeves are not required for cast-iron soil piping passing through concrete slabs-on-grade if slab is without membrane waterproofing. - Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction. - J. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 15 Section "Sleeves and Sleeve Seals for Plumbing Piping." ### 3.3 JOINT CONSTRUCTION - A. Basic piping joint construction requirements are specified in Division 15 Section "Basic Mechanical Materials and Methods." - B. Cast-Iron, Soil-Piping Joints: Make joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings." - 1. Gasketed Joints: Make with rubber gasket matching class of pipe and fittings. - 2. Hubless Joints: Make with rubber gasket and sleeve or clamp. ### 3.4 HANGER AND SUPPORT INSTALLATION - A. Seismic-restraint devices are specified in Division 15 Section "Mechanical Vibration and Seismic Controls." - B. Pipe hangers and supports are specified in Division 15 Section "Hangers and Supports." Install the following: - 1. Vertical Piping: MSS Type 8 or Type 42, clamps. - 2. Individual, Straight, Horizontal Piping Runs: According to the following: - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers. - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers. - c. Longer Than 100 Feet, if Indicated: MSS Type 49, spring cushion rolls. - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze. - 4. Base of Vertical Piping: MSS Type 52, spring hangers. - C. Install supports according to Division 15 Section "Hangers and Supports." - D. Support vertical piping and tubing at base and at each floor. - E. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods. - F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters: - 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod. - 2. NPS 3: 60 inches with 1/2-inch rod. - 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod. - G. Install supports for vertical cast-iron soil piping every 15 feet. - H. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions. #### 3.5 CONNECTIONS - A. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials. - B. Connect drainage and vent piping to the following: - 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code. Refer to Division 15 Section "Plumbing Specialties." - 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction. - 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code. Refer to Division 15 Section "Plumbing Specialties." - 4. Equipment: Connect drainage piping as indicated. Provide shutoff valve, if indicated, and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger. ### 3.6 FIELD QUALITY CONTROL - A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction. - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures. - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements. - B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection. - C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction. - D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction. - Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained. - 2. Prepare reports for tests and required corrective action. #### 3.7 CLEANING - A. Clean interior of piping. Remove dirt and debris as work progresses. - B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work. - C. Place plugs in ends of uncompleted piping at end of day and when work stops. ### SECTION 15155 - SANITARY WASTE PIPING SPECIALTIES #### PART 1 - GENERAL #### 1.1 SUMMARY - A. This Section includes the following sanitary drainage piping specialties: - 1. Cleanouts. - 2. Floor drains. - 3. Miscellaneous sanitary drainage piping specialties. #### 1.2 SUBMITTALS A. Product Data: For each type of product indicated #### 1.3 QUALITY ASSURANCE A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency. #### PART 2 - PRODUCTS ### 2.1 CLEANOUTS - A. Exposed Cast-Iron Cleanouts: - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - a. Josam Company; Josam Div. - b. MIFAB, Inc. - c. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc. - d. Tyler Pipe; Wade Div. - e. Watts Drainage Products Inc. - f. Zurn Plumbing Products Group; Specification Drainage Operation. - 2. Standard: ASME A112.36.2M for cast iron for cleanout test tee. - 3. Size: Same as connected drainage piping - 4. Body Material: Hubless, cast-iron soil pipe test tee as required to match connected piping. - 5. Closure: Countersunk, brass plug. - 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size. # B. Cast-Iron Floor Cleanouts: - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - a.
Josam Company; Josam Div. - b. Oatey. - c. Sioux Chief Manufacturing Company, Inc. - d. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc. - e. Tyler Pipe; Wade Div. - f. Watts Drainage Products Inc. - g. Zurn Plumbing Products Group; Light Commercial Operation. - h. Zurn Plumbing Products Group; Specification Drainage Operation. - 2. Standard: ASME A112.36.2M for heavy-duty, adjustable housing cleanout. - 3. Size: Same as connected branch. - Type: Heavy-duty, adjustable housing. - Body or Ferrule: Cast iron. - 6. Outlet Connection: Spigot. - 7. Closure: Brass plug with tapered threads. - 8. Adjustable Housing Material: Cast iron with set-screws or other device. - 9. Frame and Cover Material and Finish: Nickel-bronze, copper alloy. - 10. Frame and Cover Shape: Round. - 11. Top Loading Classification: Extra Heavy Duty. - 12. Riser: ASTM A 74, Extra-Heavy class, cast-iron drainage pipe fitting and riser to cleanout. #### C. Cast-Iron Wall Cleanouts: - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - a. Josam Company; Josam Div. - b. MIFAB. Inc. - c. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc. - d. Tyler Pipe; Wade Div. - e. Watts Drainage Products Inc. - f. Zurn Plumbing Products Group; Specification Drainage Operation. - 2. Standard: ASME A112.36.2M. Include wall access. - 3. Size: Same as connected drainage piping. - Body: Hubless, cast-iron soil pipe test tee as required to match connected piping. - 5. Closure: Countersunk, brass plug. - 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size. - 7. Wall Access: Round, deep, chrome-plated bronze cover plate with screw. - 8. Wall Access: Round, nickel-bronze, copper-alloy, or stainless-steel wall-installation frame and cover. ### 2.2 FLOOR DRAINS #### A. Cast-Iron Floor Drains: - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - Commercial Enameling Co. - b. Josam Company; Josam Div. - c. MIFAB, Inc. - d. Prier Products, Inc. - e. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc. - f. Tyler Pipe; Wade Div. - g. Watts Drainage Products Inc. - h. Zurn Plumbing Products Group; Light Commercial Operation. - i. Zurn Plumbing Products Group; Specification Drainage Operation. - 2. Standard: ASME A112.6.3. - 3. Body Material: Gray iron. - 4. Seepage Flange: Not required. - 5. Anchor Flange: Required. - 6. Clamping Device: Required. - 7. Outlet: Bottom. - 8. Top or Strainer Material: Nickel bronze. - 9. Top of Body and Strainer Finish: Nickel bronze. - 10. Top Shape: Round. - 11. Top Loading Classification: Extra Heavy-Duty. - 12. Trap Material: Cast iron. - 13. Trap Pattern: Standard P-trap. - 14. Trap Features: Trap-seal primer valve drain connection. ### 2.3 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES - A. Floor-Drain, Trap-Seal Primer Fittings: - Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection. - 2. Size: Same as floor drain outlet with NPS 1/2 side inlet. #### PART 3 - EXECUTION #### 3.1 INSTALLATION - A. Refer to Division 15 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements. - B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated: - Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated. - 2. Locate at each change in direction of piping greater than 45 degrees. - 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping. - 4. Locate at base of each vertical soil and waste stack. - C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor. - D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall. - E. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated. - 1. Position floor drains for easy access and maintenance. - 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. - 3. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated. - F. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection. - 1. Exception: Fitting may be omitted if trap has trap-seal primer connection. - 2. Size: Same as floor drain inlet. - G. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated. ### 3.2 CONNECTIONS - A. Piping installation requirements are specified in other Division 15 Sections. Drawings indicate general arrangement of piping, fittings, and specialties. - B. Install piping adjacent to equipment to allow service and maintenance. ### 3.3 LABELING AND IDENTIFYING - A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each grease interceptor. - B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 15 Section " Identification for Plumbing Piping and Equipment." # 3.4 PROTECTION - A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work. - B. Place plugs in ends of uncompleted piping at end of each day or when work stops. #### SECTION 15160 - STORM DRAINAGE PIPING #### PART 1 - GENERAL #### 1.1 SUMMARY - A. This Section includes the following storm drainage piping inside the building. - 1. Pipe, tube, and fittings. - 2. Special pipe fittings. ### 1.2 PERFORMANCE REQUIREMENTS - A. Components and installation shall be capable of withstanding the following minimum working pressure, unless otherwise indicated: - 1. Storm Drainage Piping: 10-foot head of water. ### 1.3 SUBMITTALS A. Field quality-control inspection and test reports. #### 1.4 QUALITY ASSURANCE - A. Piping materials shall bear label, stamp, or other markings of specified testing agency. - B. Comply with NSF 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-drain" for plastic drain piping. ### PART 2 - PRODUCTS ### 2.1 PIPING MATERIALS - A. Hub-and-Spigot, Cast-Iron Pipe and Fittings: ASTM A 74, Service class. - 1. Gaskets: ASTM C 564, rubber. - B. Hubless Cast-Iron Pipe and Fittings: ASTM A 888 or CISPI 301. - 1. Shielded Couplings: ASTM C 1277 assembly of metal shield or housing, corrosion-resistant fasteners, and rubber sleeve with integral, center pipe stop. - a. Standard, Shielded, Stainless-Steel Couplings: CISPI 310, with stainless-steel corrugated shield; stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve. - b. Heavy-Duty, Shielded, Stainless-Steel Couplings: With stainless-steel shield, stainless-steel bands and tightening devices, and ASTM C 564, rubber sleeve. #### PART 3 - EXECUTION #### 3.1 PIPING APPLICATIONS - A. Special pipe fittings with pressure ratings at least equal to piping pressure ratings may be used in applications below, unless otherwise indicated. - B. Aboveground storm drainage piping NPS 6 and smaller shall be any of the following: - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints. - 2. Hubless cast-iron soil pipe and fittings; standard, shielded, stainless-steel couplings; and coupled joints. #### 3.2 PIPING INSTALLATION - A. Storm sewer and drainage piping outside the building are specified in Division 2 Section "Storm Drainage." - B. Basic piping installation requirements are specified in Division 15 Section "Basic Mechanical Materials and Methods." - C. Install cleanouts at grade and extend to where building storm drains connect to building storm sewers. Cleanouts are specified in Division 15 Section "Plumbing Specialties." - D. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings." - E. Make changes in direction for storm piping using appropriate branches, bends, and long-sweep bends. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited. - F. Lay buried building drain piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed. - G. Install storm drainage piping at the following minimum slopes, unless otherwise indicated: - 1. Building Storm Drain: 1 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger. - 2. Horizontal Storm-Drainage Piping: 2 percent downward in direction of flow. - H. Sleeves are not required for cast-iron soil piping passing through concrete slabs-on-grade if slab is without membrane waterproofing. - I. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction. - J. Install sleeves for piping penetrations of walls,
ceilings, and floors. Comply with requirements for sleeves specified in Division 15 Section "Sleeves and Sleeve Seals for Plumbing Piping." - K. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 15 Section "Sleeves and Sleeve Seals for Plumbing Piping." - L. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 15 Section "Escutcheons for Plumbing Piping." ### 3.3 JOINT CONSTRUCTION - A. Basic piping joint construction requirements are specified in Division 15 Section "Basic Mechanical Materials and Methods." - B. Hub-and-Spigot, Cast-Iron Soil Piping Gasketed Joints: Join according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints. - C. Hubless Cast-Iron Soil Piping Coupled Joints: Join according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-coupling joints. ### 3.4 HANGER AND SUPPORT INSTALLATION - A. Seismic-restraint devices are specified in Division 15 Section "Mechanical Vibration and Seismic Controls." - B. Pipe hangers and supports are specified in Division 15 Section "Hangers and Supports." Install the following: - 1. Vertical Piping: MSS Type 8 or Type 42, clamps. - 2. Individual, Straight, Horizontal Piping Runs: According to the following: - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers. - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers. - c. Longer Than 100 Feet, if Indicated: MSS Type 49, spring cushion rolls. - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze. - 4. Base of Vertical Piping: MSS Type 52, spring hangers. - C. Install supports according to Division 15 Section "Hangers and Supports." - D. Support vertical piping and tubing at base and at each floor. - E. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods. - F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters: - 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod. - 2. NPS 3: 60 inches with 1/2-inch rod. - 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod. - 4. NPS 6: 60 inches with 3/4-inch rod. - G. Install supports for vertical cast-iron soil piping every 15 feet. - H. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions. # 3.5 CONNECTIONS A. Connect interior storm drainage piping to exterior storm drainage piping. Use transition fitting to join dissimilar piping materials. B. Connect storm drainage piping to roof drains and storm drainage specialties. ### 3.6 FIELD QUALITY CONTROL - A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction. - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in. - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements. - B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection. - C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction. - D. Test storm drainage piping according to procedures of authorities having jurisdiction. ### 3.7 CLEANING - A. Clean interior of piping. Remove dirt and debris as work progresses. - B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work. - C. Place plugs in ends of uncompleted piping at end of day and when work stops. ### SECTION 15165 - STORM DRAINAGE PIPING SPECIALTIES ### PART 1 - GENERAL #### 1.1 SUMMARY - A. Section Includes: - 1. Miscellaneous storm drainage piping specialties. # 1.2 SUBMITTALS A. Product Data: For each type of product indicated. ### 1.3 QUALITY ASSURANCE A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency. ### PART 2 - PRODUCTS ### 2.1 MISCELLANEOUS STORM DRAINAGE PIPING SPECIALTIES - A. Conductor Nozzles: - A. Conductor Nozzles: - 1. Description: Bronze body with threaded inlet and bronze wall flange with mounting holes. - 2. Size: Same as connected conductor. ### PART 3 - EXECUTION ### 3.1 INSTALLATION - A. Install conductor nozzles at exposed bottom of conductors where they spill onto grade. - B. Install cleanouts in aboveground piping and building drain piping according to the following instructions unless otherwise indicated: - Use cleanouts the same size as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated. - 2. Locate cleanouts at each change in direction of piping greater than 45 degrees. - Locate cleanouts at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping. - 4. Locate cleanouts at base of each vertical soil and waste stack. - C. Install wall cleanouts in vertical conductors. Install access door in wall if indicated. # 3.2 CONNECTIONS A. Comply with requirements for piping specified in Division 15 Sections. Drawings indicate general arrangement of piping, fittings, and specialties. # 3.3 PROTECTION - A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work. - B. Place plugs in ends of uncompleted piping at end of each day or when work stops. ### SECTION 15195 - FACILITY NATURAL-GAS PIPING ### PART 1 - GENERAL #### 1.1 SUMMARY ### A. Section Includes: - 1. Pipes, tubes, and fittings. - 2. Piping specialties. - 3. Piping and tubing joining materials. - 4. Valves. - 5. Pressure regulators. ### 1.2 PERFORMANCE REQUIREMENTS - A. Minimum Operating-Pressure Ratings: - 1. Piping and Valves: 100 psig minimum unless otherwise indicated. - 2. Service Regulators: 65 psig minimum unless otherwise indicated. - B. Natural-Gas System Pressures within Buildings: Two pressure ranges. Primary pressure is more than 0.5 psig but not more than 2 psig, and is reduced to secondary pressure of 0.5 psig or less. ### 1.3 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Welding certificates. - C. Field quality-control reports. - D. Operation and maintenance data. ### 1.4 QUALITY ASSURANCE - A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel." - B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code. - C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application. ### PART 2 - PRODUCTS ### 2.1 PIPES, TUBES, AND FITTINGS A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B. - 1. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150, standard pattern. - 2. Wrought-Steel Welding Fittings: ASTM A 234/A 234M for butt welding and socket welding. - 3. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends. ### 2.2 JOINING MATERIALS - A. Joint Compound and Tape: Suitable for natural gas. - B. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded. ### 2.3 MANUAL GAS SHUTOFF VALVES - A. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33. - 1. CWP Rating: 125 psig. - 2. Threaded Ends: Comply with ASME B1.20.1. - 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3. - 4. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles. - Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller. - 6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body. - B. Two-Piece, Regular-Port Bronze Ball Valves with Bronze Trim: MSS SP-110. - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - a. BrassCraft Manufacturing Company; a Masco company. - b. Conbraco Industries, Inc.; Apollo Div. - c. Lyall, R. W. & Company, Inc. - d. McDonald, A. Y. Mfg. Co. - e. Perfection Corporation; a subsidiary of American Meter Company. - 2. Body: Bronze, complying with ASTM B 584. - 3. Ball: Chrome-plated bronze. - 4. Stem: Bronze; blowout proof. - Seats: Reinforced TFE. - 6. Packing: Threaded-body packnut design with adjustable-stem packing. - 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles. - 8. CWP Rating: 600 psig. - 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction. - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body. - C. Bronze Plug Valves: MSS SP-78. - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - a. Lee Brass Company. - b. McDonald, A. Y. Mfg. Co. - 2. Body: Bronze, complying with ASTM B 584. - 3. Plug: Bronze. - 4. Ends: Threaded, socket, as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule"
Articles. - 5. Operator: Square head or lug type with tamperproof feature where indicated. - Pressure Class: 125 psig. - 7. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction. - 8. Service: Suitable for natural-gas service with "WOG" indicated on valve body. ### 2.4 PRESSURE REGULATORS ### A. General Requirements: - 1. Single stage and suitable for natural gas. - 2. Steel jacket and corrosion-resistant components. - 3. Elevation compensator. - 4. End Connections: Threaded for regulators NPS 2 and smaller. - B. Line Pressure Regulators: Comply with ANSI Z21.80. - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - a. Actaris. - b. American Meter Company. - c. Eclipse Combustion, Inc. - d. Fisher Control Valves and Regulators; Division of Emerson Process Management. - e. Invensys. - f. Maxitrol Company. - g. Richards Industries; Jordan Valve Div. - ĥ. - 2. Body and Diaphragm Case: Cast iron or die-cast aluminum. - 3. Springs: Zinc-plated steel; interchangeable. - 4. Diaphragm Plate: Zinc-plated steel. - 5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port. - 6. Orifice: Aluminum; interchangeable. - 7. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon. - 8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator. - 9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff. - 10. Overpressure Protection Device: Factory mounted on pressure regulator. - 11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping. - 12. Maximum Inlet Pressure: 2 psig. - C. Appliance Pressure Regulators: Comply with ANSI Z21.18. - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - a. Canadian Meter Company Inc. - b. Eaton Corporation; Controls Div. - c. Harper Wyman Co. - d. Maxitrol Company. - e. SCP, Inc. - 2. Body and Diaphragm Case: Die-cast aluminum. - 3. Springs: Zinc-plated steel; interchangeable. - Diaphragm Plate: Zinc-plated steel. - Seat Disc: Nitrile rubber. - 6. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon. - 7. Factory-Applied Finish: Minimum three-layer polyester and polyurethane paint finish. - 8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction. - 9. Maximum Inlet Pressure: 2 psig. ### 2.5 DIELECTRIC UNIONS - A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - 1. Capitol Manufacturing Company. - 2. Central Plastics Company. - 3. Hart Industries International, Inc. - 4. McDonald, A. Y. Mfg. Co. - 5. Watts Regulator Co.; Division of Watts Water Technologies, Inc. - 6. Wilkins; Zurn Plumbing Products Group. - B. Minimum Operating-Pressure Rating: 150 psig. - C. Combination fitting of copper alloy and ferrous materials. - D. Insulating materials suitable for natural gas. - E. Combination fitting of copper alloy and ferrous materials with threaded, brazed-joint, plain, or welded end connections that match piping system materials. #### PART 3 - EXECUTION ### 3.1 INDOOR PIPING INSTALLATION - A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping. - B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings. - C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations. - D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas. - E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise. - F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal. - G. Locate valves for easy access. - H. Install piping free of sags and bends. - I. Install fittings for changes in direction and branch connections. - J. Verify final equipment locations for roughing-in. - K. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements. - L. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing. - 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap. - M. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap. - N. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view. - O. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down. - P. Connect branch piping from top or side of horizontal piping. - Q. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. - R. Do not use natural-gas piping as grounding electrode. - S. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve. - T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 15 Section "Sleeves and Sleeve Seals for HVAC Piping." - U. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 15 Section "Sleeves and Sleeve Seals for HVAC Piping." - V. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 15 Section "Escutcheons for HVAC Piping." # 3.2 VALVE INSTALLATION - A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing or copper connector. - B. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing. ### 3.3 PIPING JOINT CONSTRUCTION - A. Ream ends of pipes and tubes and remove burrs. - B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly. - C. Threaded Joints: - 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1. - 2. Cut threads full and clean using sharp dies. - Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe. - Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified. - 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds. ### D. Welded Joints: - Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators. - 2. Bevel plain ends of steel pipe. - 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction. ### 3.4 HANGER AND SUPPORT INSTALLATION - A. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Division 15 Section "Vibration and Seismic Controls for HVAC Piping and Equipment." - B. Comply with requirements for pipe hangers and supports specified in Division 15 Section "Hangers and Supports." - C. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes: - 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch. - 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch. - 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch. ### 3.5 CONNECTIONS - A. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70. - B. Install piping adjacent to appliances to allow service and maintenance of appliances. - C. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment. - D. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance. ### 3.6 LABELING AND IDENTIFYING A. Comply with requirements in Division 15 Section "Mechanical Identification" for piping and valve identification. # 3.7 FIELD QUALITY CONTROL A. Test, inspect, and purge natural gas according to the International Fuel Gas Code and authorities having jurisdiction. - B. Natural-gas piping will be considered defective if it does not pass tests and inspections. - C. Prepare test and inspection reports. ### 3.8 INDOOR PIPING SCHEDULE - A. Aboveground, piping shall be
one of the following: - 1. Steel pipe with malleable-iron fittings and threaded joints. - 2. Steel pipe with wrought-steel fittings and welded joints. ### 3.9 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE - A. Valves for pipe sizes NPS 2 and smaller at service meter shall be one of the following: - 1. Two-piece, regular-port, bronze ball valves with bronze trim. - 2. Bronze plug valve. - B. Distribution piping valves for pipe sizes NPS 2 and smaller shall be one of the following: - 1. Two-piece, regular-port, bronze ball valves with bronze trim. - 2. Bronze plug valve. - C. Valves in branch piping for single appliance shall be one of the following: - 1. One-piece, bronze ball valve with bronze trim. - 2. Two-piece, regular-port, bronze ball valves with bronze trim. - 3. Bronze plug valve. This page intentionally left blank. ### SECTION 15211 - GENERAL-SERVICE COMPRESSED-AIR PIPING ### PART 1 - GENERAL ### 1.1 SUMMARY - A. This Section includes piping and related specialties for general-service compressed-air systems operating at 150 psig or less. - B. See Division 15 Section "General-Service Compressed-Air Equipment" for general-service air compressors and accessories. ### 1.2 PERFORMANCE REQUIREMENTS A. Seismic Performance: Compressed-air piping and support and installation shall withstand effects of seismic events determined according to SEI/ASCE 7, "Minimum Design Loads for Buildings and Other Structures." ### 1.3 SUBMITTALS A. Field quality-control test reports. ### 1.4 QUALITY ASSURANCE A. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for low-pressure compressed-air piping. ## PART 2 - PRODUCTS ### 2.1 PIPES, TUBES, AND FITTINGS - A. Steel Pipe: ASTM A 53/A 53M, Type E or S, Grade B, black with ends threaded according to ASME B1.20.1. - Steel Nipples: ASTM A 733, made of ASTM A 53/A 53M or ASTM A 106, Schedule 40, galvanized seamless steel pipe. Include ends matching joining method. - 2. Malleable-Iron Fittings: ASME B16.3, Class 150 or 300, threaded. - 3. Malleable-Iron Unions: ASME B16.39, Class 150 or 300, threaded. - 4. Steel Flanges: ASME B16.5, Class 150 or 300, carbon steel, threaded. - 5. Wrought-Steel Butt-Welding Fittings: ASME B16.9, Schedule 40. - 6. Steel Flanges: ASME B16.5, Class 150 or 300, carbon steel. - B. Copper Tube: ASTM B 88, Type K or L seamless, drawn-temper, water tube. - 1. Wrought-Copper Fittings: ASME B16.22, solder-joint pressure type or MSS SP-73, wrought copper with dimensions for brazed joints. - 2. Cast-Copper-Alloy Flanges: ASME B16.24, Class 150 or 300. - 3. Copper Unions: ASME B16.22 or MSS SP-123. C. Transition Couplings for Metal Piping: Metal coupling or other manufactured fitting same size as, with pressure rating at least equal to and ends compatible with, piping to be joined. ### 2.2 JOINING MATERIALS - A. Pipe-Flange Gasket Materials: Suitable for compressed-air piping system contents. - ASME B16.21, nonmetallic, flat, full-face, asbestos free, 1/8-inch maximum thickness. - B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated. - C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813. - D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated. ### 2.3 VALVES A. Metal Ball, Butterfly, Check, Gate, and Globe Valves: Comply with requirements in Division 15 Section "Valves." ### 2.4 DIELECTRIC FITTINGS - A. General Requirements for Dielectric Fittings: Combination fitting of copper alloy and ferrous materials with insulating material; suitable for system fluid, pressure, and temperature. Include threaded, solder-joint, plain, or weld-neck end connections that match piping system materials. - B. Dielectric Unions: Factory-fabricated union assembly, for 250-psig minimum working pressure at 180 deg F. ### PART 3 - EXECUTION ### 3.1 PIPING APPLICATIONS - A. Low-Pressure Compressed-Air Distribution Piping: Use the following piping materials for each size range: - 1. Steel pipe; threaded, malleable-iron fittings; and threaded joints. - 2. [Type K or L, copper tube; wrought-copper fittings; and brazed or soldered joints. ### 3.2 VALVE APPLICATIONS - A. Comply with requirements in "Valve Applications" Article in Division 15 Section "Valves." - B. Equipment Isolation Valves: Safety-exhaust, copper-alloy ball valve with exhaust vent and pressure rating at least as great as piping system operating pressure. ### 3.3 PIPING INSTALLATION A. Drawing plans, schematics, and diagrams indicate general location and arrangement of compressed-air piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, - expansion, air-compressor sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings. - B. Install piping concealed from view and protected from physical contact by building occupants, unless otherwise indicated and except in equipment rooms and service areas. - C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited, unless otherwise indicated. - D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and to coordinate with other services occupying that space. - E. Install piping adjacent to equipment and machines to allow service and maintenance. - F. Install air and drain piping with 1 percent slope downward in direction of flow. - G. Install nipples, flanges, unions, transition and special fittings, and valves with pressure ratings same as or higher than system pressure rating, unless otherwise indicated. - H. Equipment and Specialty Flanged Connections: - 1. Use steel companion flange with gasket for connection to steel pipe. - Use cast-copper-alloy companion flange with gasket and brazed or soldered joint for connection to copper tube. Do not use soldered joints for connection to air compressors or to equipment or machines producing shock or vibration. - I. Install branch connections to compressed-air mains from top of main. Provide drain leg and drain trap at end of each main and branch and at low points. - J. Install thermometer and pressure gage on discharge piping from each air compressor and on each receiver. Comply with requirements in Division 15 Section "Meters and Gages." - K. Install piping to permit valve servicing. - Install piping free of sags and bends. - M. Install fittings for changes in direction and branch connections. - N. Install seismic restraints on piping. Seismic-restraint devices are specified in Division 15 Section "Mechanical Vibration and Seismic Controls." - O. Install unions, adjacent to each valve and at final connection to each piece of equipment and machine. - P. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 15 Section "Sleeves and Sleeve Seals for Plumbing Piping." - Q. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 15 Section "Sleeves and Sleeve Seals for Plumbing Piping." - R. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 15 Section "Escutcheons for Plumbing Piping." ## 3.4 JOINT CONSTRUCTION - A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe. - B. Remove scale, slag, dirt, and debris from pipe and fittings before assembly. - C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Apply appropriate tape or thread compound to external pipe threads. - D. Brazed Joints for Copper Tubing: Join according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter. - E. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Join according to ASTM B 828 or CDA's "Copper Tube Handbook." - F. Dissimilar Metal Piping Material Joints: Use dielectric fittings. ### 3.5 DIELECTRIC FITTING INSTALLATION A. Install dielectric unions in piping at connections of dissimilar metal piping and tubing. ### 3.6 HANGER AND SUPPORT INSTALLATION - A. Comply with requirements in Division 15 Section "Mechanical Vibration and Seismic Controls" for seismicrestraint devices. - B. Comply with requirements in Division 15 Section "Hangers and Supports" for pipe hanger and support devices. - C. Vertical Piping: MSS Type 8 or 42, clamps. - D. Individual, Straight, Horizontal Piping Runs: - 1. 100 Feet or Less: MSS Type 1, adjustable, steel clevis hangers. - 2. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers. - E. Base of Vertical Piping: MSS Type 52, spring hangers. - F. Support horizontal piping within 12 inches of each fitting and coupling. - G. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods. - H. Install hangers for Schedule 40, steel piping with the following maximum horizontal spacing and minimum rod diameters: - 1. NPS 1/4 to NPS 1/2: 96 inches with 3/8-inch rod. - 2. NPS 3/4 to NPS 1-1/4: 84 inches with 3/8-inch rod. - 3. NPS 1-1/2: 12 feet with 3/8-inch rod. - 4. NPS 2: 13 feet with 3/8-inch rod. - I. Install supports for vertical, Schedule 40, steel piping every 15 feet. - J. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters: - 1. NPS 1/4: 60 inches with 3/8-inch rod. - 2. NPS 3/8 and NPS 1/2: 72 inches with 3/8-inch rod. - 3. NPS 3/4: 84 inches with 3/8-inch rod. - 4. NPS 1: 96 inches with 3/8-inch rod. - 5. NPS 1-1/4: 108 inches with 3/8-inch rod. - 6. NPS 1-1/2: 10 feet with 3/8-inch rod. - 7. NPS 2: 11 feet with 3/8-inch rod. - K. Install supports for vertical copper tubing every 10 feet. ### 3.7 LABELING AND IDENTIFICATION A. Install identifying labels and devices for
general-service compressed-air piping, valves, and specialties. Comply with requirements in Division 15 Section "Mechanical Identification." ### 3.8 FIELD QUALITY CONTROL - A. Perform field tests and inspections. - B. Tests and Inspections: - Piping Leak Tests: Test new and modified parts of existing piping. Cap and fill general-service compressed-air piping with oil-free dry air or gaseous nitrogen to pressure of 50 psig above system operating pressure, but not less than 150 psig. Isolate test source and let stand for four hours to equalize temperature. Refill system, if required, to test pressure; hold for two hours with no drop in pressure. - 2. Repair leaks and retest until no leaks exist. This page intentionally left blank. ### SECTION 15543 - FUEL-FIRED UNIT HEATERS ### PART 1 - GENERAL #### 1.1 SUMMARY A. This Section includes gas-fired unit heaters. ### 1.2 SUBMITTALS - A. Product Data: For each type of fuel-fired unit heater indicated. Include rated capacities, operating characteristics, and accessories. - B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection. - 1. Wiring Diagrams: Power, signal, and control wiring. - C. Field quality-control test reports. - D. Operation and maintenance data. ### 1.3 QUALITY ASSURANCE - A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. - B. ASHRAE/IESNA 90.1-2004 Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2004, Section 6 "Heating, Ventilating, and Air-Conditioning." #### 1.4 WARRANTY - A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace heat exchanger of fuel-fired unit heater that fails in materials or workmanship within specified warranty period. - 1. Warranty Period: Two years from date of Substantial Completion. #### PART 2 - PRODUCTS ### 2.1 GAS-FIRED UNIT HEATERS - A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - 1. Lennox Industries, Inc. - 2. Modine Manufacturing Company. - 3. Reznor/Thomas & Betts Corporation. - 4. Sterling HVAC Products; Div. of Mestek Technology Inc. - B. Description: Factory assembled, piped, and wired, and complying with ANSI Z83.8/CSA 2.6. - C. Fuel Type: Design burner for natural gas having characteristics same as those of gas available at Project site. - D. Type of Venting: Gravity vented. - E. Housing: Steel, with integral draft hood and inserts for suspension mounting rods. - F. Heat Exchanger: Aluminized steel. - G. Burner Material: Aluminized steel with stainless-steel inserts. - H. Unit Fan: Propeller blades riveted to heavy-gage steel spider bolted to cast-iron hub, dynamically balanced, and resiliently mounted. - I. Controls: Regulated redundant gas valve containing pilot solenoid valve, electric gas valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff all in one body. - 1. Gas Control Valve: Single stage. - 2. Ignition: Electronically controlled electric spark with flame sensor. - 3. Fan Thermal Switch: Operates fan on heat-exchanger temperature. - 4. Vent Flow Verification: Flame rollout switch. - Control transformer. - 6. High Limit: Thermal switch or fuse to stop burner. - 7. Thermostat: Single-stage, wall-mounting type with 50 to 90 deg F operating range and fan on switch. - J. Discharge Louvers: Independently adjustable horizontal blades. - K. Accessories: - 1. Vertical discharge louvers. - 2. Four-point suspension kit. #### PART 3 - EXECUTION ### 3.1 INSTALLATION - A. Install and connect gas-fired unit heaters and associated fuel and vent features and systems according to NFPA 54, applicable local codes and regulations, and manufacturer's written installation instructions. - B. Suspended Units: Suspend from substrate using threaded rods, spring hangers, and building attachments. Secure rods to unit hanger attachments. Adjust hangers so unit is level and plumb. - C. Install piping adjacent to fuel-fired unit heater to allow service and maintenance. - D. Gas Piping: Comply with Division 15 Section "Fuel Gas Piping." Connect gas piping to gas train inlet; provide union with enough clearance for burner removal and service. - E. Vent Connections: Comply with Division 15 Section "Breechings, Chimneys, and Stacks." - F. Electrical Connections: Comply with applicable requirements in Division 16 Sections. - 1. Install electrical devices furnished with heaters but not specified to be factory mounted. - G. Adjust initial temperature set points. H. Adjust burner and other unit components for optimum heating performance and efficiency. # 3.2 FIELD QUALITY CONTROL A. Tests and Inspections: Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment. This page intentionally left blank. ## SECTION 15550 - BREECHINGS, CHIMNEYS, AND STACKS ### PART 1 - GENERAL #### 1.1 SUMMARY - A. This Section includes the following: - 1. Listed double-wall vents. # 1.2 SUBMITTALS - A. Product Data: For the following: - 1. Type B and BW vents. ### PART 2 - PRODUCTS ### 2.1 LISTED TYPE B AND BW VENTS - A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - 1. American Metal Products; MASCO Corporation. - 2. Cleaver-Brooks; Div. of Aqua-Chem Inc. - 3. FAMCO. - 4. Hart & Cooley, Inc. - 5. Heat-Fab, Inc. - 6. Industrial Chimney Company. - 7. LSP Products Group, Inc. - 8. Metal-Fab, Inc. - 9. Schebler Co. (The). - 10. Selkirk Inc.; Selkirk Metalbestos and Air Mate. - 11. Simpson Dura-Vent Co., Inc.; Subsidiary of Simpson Manufacturing Co. - 12. Tru-Flex Metal Hose Corp. - 13. Van-Packer Company, Inc. - B. Description: Double-wall metal vents tested according to UL 441 and rated for 480 deg F continuously for Type B, or 550 deg F continuously for Type BW; with neutral or negative flue pressure complying with NFPA 211. - C. Construction: Inner shell and outer jacket separated by at least a 1/4-inch airspace. - D. Inner Shell: ASTM B 209, Type 1100 aluminum. - E. Outer Jacket: Galvanized steel. - F. Accessories: Tees, elbows, increasers, draft-hood connectors, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly. - 1. Termination: Antibackdraft. ### PART 3 - EXECUTION ### 3.1 APPLICATION A. Listed Type B and BW Vents: Vents for certified gas appliances. ### 3.2 INSTALLATION OF LISTED VENTS AND CHIMNEYS - A. Locate to comply with minimum clearances from combustibles and minimum termination heights according to product listing or NFPA 211, whichever is most stringent. - B. Support vents at intervals recommended by manufacturer to support weight of vents and all accessories, without exceeding appliance loading. - C. Slope breechings down in direction of appliance, with condensate drain connection at lowest point piped to nearest drain. - D. Lap joints in direction of flow. - E. After completing system installation, including outlet fittings and devices, inspect exposed finish. Remove burrs, dirt, and construction debris and repair damaged finishes. - F. Clean breechings internally, during and after installation, to remove dust and debris. Clean external surfaces to remove welding slag and mill film. Grind welds smooth and apply touchup finish to match factory or shop finish. - G. Provide temporary closures at ends of breechings, chimneys, and stacks that are not completed or connected to equipment. ### SECTION 15733 - REPLACEMENT-AIR UNITS ### PART 1 - GENERAL #### 1.1 SUMMARY A. This Section includes cooling and heating replacement-air units. ### 1.2 SUBMITTALS - A. Product Data: Include rated capacities, furnished specialties, and accessories. - B. Shop Drawings: Include details of installation and wiring diagrams. - C. Coordination Drawings: Replacement-air units suspension details drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved: - 1. Size and location of rooftop replacement-air unit mounting rails and anchor points and methods for anchoring units to roof curb. - 2. Required roof penetrations for ducts, pipes, and electrical raceways, including size and location of each penetration. - D. Startup service reports. - E. Operation and maintenance data. - F. Warranty. ### 1.3 QUALITY ASSURANCE - A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. - B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup." - C. ASHRAE/IESNA 90.1-2004 Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2004, Section 6 "Heating, Ventilating, and Air-Conditioning." ### 1.4 WARRANTY - A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to replace components listed below that fail in materials or workmanship within specified warranty period. - 1. Warranty Period for Compressors: Manufacturer's standard, but not less than five years from date of Substantial Completion. - 2. Warranty Period for Heat Exchangers: Manufacturer's standard, but not less than five years from date of Substantial Completion. ### PART 2 - PRODUCTS ### 2.1 MANUFACTURERS - A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include,
but are not limited to, the following: - Captive-Aire - 2. Reznor-Thomas & Betts Corporation; Mechanical Products Division. #### 2.2 CABINET - A. Construction: Single wall. - B. Exterior Casing: Galvanized steel with baked-enamel paint finish and with lifting lugs and knockouts for electrical and piping connections. - C. Service Doors: Hinged access doors with neoprene gaskets. - D. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004. ### 2.3 SUPPLY-AIR FAN - A. Fan: Forward-curved centrifugal; statically and dynamically balanced, galvanized steel, mounted on solid-steel shaft with self-aligning, permanently lubricated ball bearings. - B. Motor: Open dripproof, single-speed motor. - C. Drive: V-belt drive with matching fan pulley and adjustable motor sheaves and belt assembly with minimum 1.4 service factor. - D. Mounting: Fan wheel, motor, and drives shall be mounted in fan casing with elastomeric isolators. ### 2.4 COOLING SYSTEM SYSTEM A. "Factory" Standard 12" deep evaporative cooling system, with automatic flush and fill.system, and controller. ### 2.5 DIRECT-FIRED GAS FURNACE - A. Description: Factory assembled, piped, and wired; complying with NFPA 54, "National Fuel Gas Code," and ANSI Z21.47, "Gas-Fired Central Furnaces." - 1. AGA Approval: Designed and certified by and bearing label of AGA. - B. Safety Controls: - 1. Gas Control Valve: Electronic modulating. ### 2.6 OUTDOOR-AIR INTAKE AND DAMPERS A. Provide "factory " outdoor air motorized damper. ### 2.7 FILTERS - A. Comply with NFPA 90A. - B. Disposable Panel Filters: 2-inch- thick, factory-fabricated, flat-panel-type, disposable air filters with holding frames, with a minimum efficiency report value of 6 according to ASHRAE 52.2 and 90 percent average arrestance according to ASHRAE 52.1. - 1. Media: Interlaced glass fibers sprayed with nonflammable adhesive. - 2. Frame: Galvanized steel. ### 2.8 CONTROLS - A. Factory-wire connection for controls' power supply. - B. Control devices, including sensors, transmitters, relays, switches, thermostats, detectors, operators, actuators, and valves, shall be manufacturer's standard items to accomplish indicated control functions. - C. Supply-Fan Control: Units shall be electrically interlocked with corresponding exhaust fans, to operate continuously when exhaust fans are running. Time clock shall switch operation from occupied to unoccupied. Night setback thermostat shall cycle fan during unoccupied periods to maintain space temperature. - 1. Timer: Seven-day electronic clock. - 2. Electrically interlock kitchen hood fire-extinguishing system to de-energize replacement-air unit when fire-extinguishing system discharges. # D. Heating Controls: - 1. Wall-mounting, space-temperature sensor with temperature adjustment that modulates gas furnace burner to maintain space temperature. - 2. Remote Setback Thermostat: Adjustable room thermostat selected by timer, set at 50 deg F; cycles supply fan and gas furnace burner to maintain space temperature. # 2.9 MOTORS A. Comply with requirements in Division 15 Section "Motors." # PART 3 - EXECUTION ### 3.1 INSTALLATION - A. Suspend from roof structure. - B. Install wall- and duct-mounting sensors, thermostats, and humidistats furnished by manufacturers for field installation. Install control wiring and make final connections to control devices and unit control panel. - C. Piping installation requirements are specified in other Division 15 Sections. Drawings indicate general arrangement of piping, fittings, and specialties. - D. Install piping adjacent to machine to allow service and maintenance. - Gas Burner Connections: Comply with requirements in Division 15 Section "Fuel Gas Piping." Connect gas piping to burner, full size of gas train inlet, and connect with union, pressure regulator, and shutoff valve with sufficient clearance for burner removal and service. - E. Duct Connections: Duct installation requirements are specified in Division 15 Section "Metal Ducts." Drawings indicate the general arrangement of ducts. Connect supply ducts to rooftop replacement-air units with flexible duct connectors. Flexible duct connectors are specified in Division 15 Section "Duct Accessories." - F. Electrical Connections: Comply with requirements in Division 16 Sections for power wiring, switches, and motor controls. - G. Ground equipment according to Division 16 Section "Grounding and Bonding." ### 3.2 ADJUSTING - A. Adjust initial temperature and humidity set points. - B. Set field-adjustable switches and circuit-breaker trip ranges as indicated. ### 3.3 DEMONSTRATION A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain rooftop replacement-air units. Refer to Division 1 Section "Closeout Procedures." ### SECTION 15815 - METAL DUCTS ### PART 1 - GENERAL #### 1.1 SUMMARY #### A. Section Includes: - 1. Rectangular ducts and fittings. - 2. Sheet metal materials. - 3. Sealants and gaskets. - 4. Hangers and supports. #### B. Related Sections: 1. Division 15 Section "Testing, Adjusting, and Balancing" for testing, adjusting, and balancing requirements for metal ducts. #### 1.2 PERFORMANCE REQUIREMENTS - A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article. - B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems." - 1. Seismic Hazard Level A: Seismic force to weight ratio, 0.48. - C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004. ### 1.3 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Welding certificates. ### PART 2 - PRODUCTS # 2.1 RECTANGULAR DUCTS AND FITTINGS - A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated. - B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-4, "Transverse (Girth) Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible." - C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-5, "Longitudinal Seams Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible." - D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 2, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible." ### 2.2 SHEET METAL MATERIALS - A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections. - B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M. - 1. Galvanized Coating Designation: G90. - 2. Finishes for Surfaces Exposed to View: Mill phosphatized. - C. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized. - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials. - D. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches. ### 2.3 SEALANT AND GASKETS - A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL. - B. Two-Part Tape Sealing System: - 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal. - 2. Tape Width: 4 inches. - 3. Sealant: Modified styrene acrylic. - 4. Water resistant. - 5. Mold and mildew resistant. - 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative. - 7. Service: Indoor and outdoor. - 8. Service Temperature: Minus 40 to plus 200 deg F. - Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum. - C. Water-Based Joint and Seam Sealant: - 1. Application Method: Brush on. - 2. Solids Content: Minimum 65 percent. - 3. Shore A Hardness: Minimum 20. - Water resistant. - 5. Mold and mildew resistant. - 6. VOC: Maximum 75 g/L (less water). - 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative. - 8. Service: Indoor or outdoor. - Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets. - D. Flanged Joint Sealant: Comply with ASTM C 920. - 1. General: Single-component,
acid-curing, silicone, elastomeric. - Type: S. Grade: NS. Class: 25. Use: O. - E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer. # 2.4 HANGERS AND SUPPORTS - A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts. - B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation. - C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct." - D. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials. - E. Trapeze and Riser Supports: - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates. - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates. - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate. # PART 3 - EXECUTION # 3.1 DUCT INSTALLATION - A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings. - B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated. - C. Install ducts with fewest possible joints. - D. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections. - E. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines. - F. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building. - G. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness. - H. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures. - I. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "Duct Cleanliness for New Construction Guidelines." ### 3.2 INSTALLATION OF EXPOSED DUCTWORK - A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged. - B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system. - C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding. - D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets. - E. Repair or replace damaged sections and finished work that does not comply with these requirements. ### 3.3 DUCT SEALING - A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible." - B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible": - 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible." - 2. Outdoor, Supply-Air Ducts: Seal Class A. # 3.4 HANGER AND SUPPORT INSTALLATION - A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Hangers and Supports." - B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached. - 1. Where practical, install concrete inserts before placing concrete. - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured. - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick. - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick. - 5. Do not use powder-actuated concrete fasteners for seismic restraints. - C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection. - D. Hangers Exposed to View: Threaded rod and angle or channel supports. - E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet. - F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used. ### 3.5 CONNECTIONS - A. Make connections to equipment with flexible connectors complying with Division 15 Section "Duct Accessories." - B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections. ### 3.6 DUCT CLEANING - A. Clean new duct system(s) before testing, adjusting, and balancing. - B. Use service openings for entry and inspection. - Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Division 15 Section "Duct Accessories" for access panels and doors. - 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection. - 3. Remove and reinstall ceiling to gain access during the cleaning process. ### 3.7 START UP A. Air Balance: Comply with requirements in Division 15 Section "Testing, Adjusting, and Balancing." ### 3.8 DUCT SCHEDULE A. Fabricate ducts with galvanized sheet steel. This page intentionally left blank. ### SECTION 15820 - DUCT ACCESSORIES ### PART 1 - GENERAL #### 1.1 SUMMARY - A. Section Includes: - 1. Flexible connectors. ### 1.2 QUALITY ASSURANCE A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems." ### PART 2 - PRODUCTS #### 2.1 FLEXIBLE CONNECTORS - A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - 1. Ductmate Industries, Inc. - 2. Duro Dyne Inc. - 3. Ventfabrics, Inc. - 4. Ward Industries, Inc.; a division of Hart & Cooley, Inc. - B. Materials: Flame-retardant or noncombustible fabrics. - C. Coatings and Adhesives: Comply with UL 181, Class 1. - D. Metal-Edged Connectors: Factory fabricated with a fabric strip 5-3/4 inches wide attached to 2 strips of 2-3/4-inch- wide, 0.028-inch- thick, galvanized sheet steel or 0.032-inch- thick aluminum sheets. Provide metal compatible with connected ducts. - E. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone. - 1. Minimum Weight: 24 oz./sq. yd.. - 2. Minimum Tensile Strength: 500 lbf/inch in the warp and 440 lbf/inch in the filling. - 3. Service Temperature: Minus 50 to plus 250 deg F. # 2.2 DUCT ACCESSORY HARDWARE - A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness. - B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease. ### PART 3 - EXECUTION ### 3.1 INSTALLATION - A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts. - B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts. - C. Install flexible connectors to connect ducts to equipment. #### SECTION 15838 - POWER VENTILATORS #### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following: - 1. Propeller fans. #### 1.3 PERFORMANCE REQUIREMENTS - A. Project Altitude: Base fan-performance ratings on actual Project site elevations. - B. Operating Limits: Classify according to AMCA 99. #### 1.4 SUBMITTALS - A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated and include the following: - 1. Certified fan performance curves with system operating conditions indicated. - 2. Certified fan sound-power ratings. - 3. Motor ratings and electrical characteristics, plus motor and electrical accessories. - 4. Material thickness and finishes, including color charts. - 5. Dampers, including housings, linkages, and operators. - 6. Roof curbs. - B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection. - 1.
Wiring Diagrams: Power, signal, and control wiring. - C. Field quality-control test reports. - D. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals. ### 1.5 QUALITY ASSURANCE - A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. - B. AMCA Compliance: Products shall comply with performance requirements and shall be licensed to use the AMCA-Certified Ratings Seal. - C. NEMA Compliance: Motors and electrical accessories shall comply with NEMA standards. - D. UL Standard: Power ventilators shall comply with UL 705. ### 1.6 DELIVERY, STORAGE, AND HANDLING - A. Deliver fans as factory-assembled unit, to the extent allowable by shipping limitations, with protective crating and covering. - B. Disassemble and reassemble units, as required for moving to final location, according to manufacturer's written instructions. - C. Lift and support units with manufacturer's designated lifting or supporting points. #### 1.7 COORDINATION - A. Coordinate size and location of structural-steel support members. - B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 3. - C. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 7 Section "Roof Accessories." #### 1.8 EXTRA MATERIALS - A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents. - 1. Belts: One set(s) for each belt-driven unit. ### PART 2 - PRODUCTS #### 2.1 PROPELLER FANS - A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - 1. Acme Engineering & Mfg. Corp. - 2. Aerovent; a Twin City Fan Company. - 3. Airmaster Fan Co. - 4. American Coolair Corp. - 5. Ammerman; General Resource Corp. - 6. Bayley Fans; a division of Lau Industries, Inc. - 7. Breidert Air Products. - 8. Carnes Company HVAC. - 9. Chicago Blower Corporation. - 10. Cincinnati Fan. - 11. Dayton Electric Manufacturing Co.; a division of W. W. Grainger, Inc. - 12. Hartzell Fan, Inc. - 13. Howden Buffalo Inc. - 14. Industrial Air; a division of Lau Industries, Inc. - 15. JencoFan; Div. of Breidert Air Products. - 16. King Co. (The); King Air Systems. - 17. Loren Cook Company. - 18. Madison Manufacturing. - 19. Moffitt Corporation, Inc. - 20. New York Blower Company (The). - 21. NuTone Inc. - 22. Penn Ventilation. - 23. Quietaire Corporation. - 24. Stanley Fans. - B. Description: Direct- or belt-driven propeller fans consisting of fan blades, hub, housing, orifice ring, motor, drive assembly, and accessories. - C. Housing: Galvanized-steel sheet with flanged edges and integral orifice ring with baked-enamel finish coat applied after assembly. - D. Steel Fan Wheels: Formed-steel blades riveted to heavy-gage steel spider bolted to cast-iron hub. - E. Belt-Driven Drive Assembly: Resiliently mounted to housing, statically and dynamically balanced and selected for continuous operation at maximum rated fan speed and motor horsepower, with final alignment and belt adjustment made after installation. - 1. Service Factor Based on Fan Motor Size: 1.4. - 2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub. - 3. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings. - a. Ball-Bearing Rating Life: ABMA 9, L₁₀ of 100,000 hours. - 4. Pulleys: Cast iron with split, tapered bushing; dynamically balanced at factory. - Motor Pulleys: Adjustable pitch for use with motors through 5 hp; fixed pitch for use with larger motors. Select pulley so pitch adjustment is at the middle of adjustment range at fan design conditions. - 6. Belts: Oil resistant, nonsparking, and nonstatic; matched sets for multiple belt drives. - 7. Belt Guards: Fabricate of steel for motors mounted on outside of fan cabinet. ### F. Accessories: - 1. Motorized Dampers: Aluminum blades in aluminum frame; interlocked blades with nylon bearings. - Motor-Side Back Guard: Galvanized steel, complying with OSHA specifications, removable for maintenance. - 3. Wall Sleeve: Galvanized steel to match fan and accessory size. - 4. Weathershield Hood: Galvanized steel to match fan and accessory size. - 5. Weathershield Front Guard: Galvanized steel with expanded metal screen. - 6. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit. # 2.2 MOTORS - A. Comply with requirements in Division 15 Section "Motors." - B. Enclosure Type: Totally enclosed, fan cooled. #### 2.3 SOURCE QUALITY CONTROL A. Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal. B. Fan Performance Ratings: Establish flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests and ratings according to AMCA 210, "Laboratory Methods of Testing Fans for Rating." #### PART 3 - EXECUTION #### 3.1 INSTALLATION - A. Install power ventilators level and plumb. - B. Install units with clearances for service and maintenance. - C. Label units according to requirements specified in Division 15 Section "Mechanical Identification." #### 3.2 CONNECTIONS - A. Ground equipment according to Division 16 Section "Grounding and Bonding." - B. Connect wiring according to Division 16 Section "Conductors and Cables." #### 3.3 FIELD QUALITY CONTROL - A. Perform the following field tests and inspections and prepare test reports: - 1. Verify that shipping, blocking, and bracing are removed. - Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches. - 3. Verify that cleaning and adjusting are complete. - 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards. - 5. Adjust belt tension. - 6. Adjust damper linkages for proper damper operation. - 7. Verify lubrication for bearings and other moving parts. - 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position. - 9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage. - 10. Shut unit down and reconnect automatic temperature-control operators. - 11. Remove and replace malfunctioning units and retest as specified above. - B. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment. #### 3.4 ADJUSTING - A. Adjust damper linkages for proper damper operation. - B. Adjust belt tension. - C. Refer to Division 15 Section "Testing, Adjusting, and Balancing" for testing, adjusting, and balancing procedures. - D. Replace fan and motor pulleys as required to achieve design airflow. Utah National Guard DFCM # 8031480 E. Lubricate bearings. END OF SECTION 15838 This page intentionally left blank. ### SECTION 15855 - DIFFUSERS, REGISTERS, AND GRILLES #### PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. Section Includes: - 1. Drum louvers. #### 1.3 SUBMITTALS - A. Product Data: For each type of product indicated, include the following: - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings. - B. Source quality-control reports. #### PART 2 - PRODUCTS #### 2.1 HIGH-CAPACITY DIFFUSERS - A. Drum Louver: - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - a. Air Research Diffuser Products, Inc. - b. Anemostat Products; a Mestek company. - c. Carnes. - d. Hart & Cooley Inc. - e. Krueger. - f. METALAIRE, Inc. - g. Nailor Industries Inc. - h. Price Industries. - i. Titus. - j. Tuttle & Bailey. - 2. Airflow Principle: Extended distance for high airflow rates. - 3. Material: Aluminum, heavy gage extruded. - 4. Finish: White baked acrylic. - 5. Border: 1-1/4-inch width with countersunk screw holes. - 6. Gasket between drum and border. - 7. Body: Drum shaped; adjustable vertically. - 8. Blades: Individually adjustable horizontally. - 9. Mounting: Surface to duct. - 10. Accessories: - a. Duct-mounting collars with countersunk screw holes. # 2.2 SOURCE QUALITY CONTROL A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets." #### PART 3 - EXECUTION #### 3.1 EXAMINATION - A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment. - B. Proceed with installation only after unsatisfactory conditions have been corrected. ### 3.2 INSTALLATION A. Install diffusers, registers, and grilles level and plumb. # 3.3 ADJUSTING A. After installation, adjust diffusers, registers, and grilles to air patterns
indicated, or as directed, before starting air balancing. ### **END OF SECTION 15855** ### SECTION 15950 - TESTING, ADJUSTING, AND BALANCING #### PART 1 - GENERAL #### 1.1 SUMMARY - A. Section Includes: - 1. Balancing Air Systems: - a. Constant-volume air systems. ### 1.2 DEFINITIONS - A. AABC: Associated Air Balance Council. - B. NEBB: National Environmental Balancing Bureau. - C. TAB: Testing, adjusting, and balancing. - D. TABB: Testing, Adjusting, and Balancing Bureau. - E. TAB Specialist: An entity engaged to perform TAB Work. ### 1.3 SUBMITTALS - A. Strategies and Procedures Plan: Within 30 days of Contractor's Notice to Proceed, submit TAB strategies and step-by-step procedures as specified in "Preparation" Article. - B. Certified TAB reports. # 1.4 QUALITY ASSURANCE - A. TAB Contractor Qualifications: Engage a TAB entity certified by NEBB. - 1. TAB Field Supervisor: Employee of the TAB contractor and certified by NEBB. - 2. TAB Technician: Employee of the TAB contractor and who is certified by NEBB as a TAB technician. - B. Certify TAB field data reports and perform the following: - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports. - 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification. - C. TAB Report Forms: Use standard TAB contractor's forms approved by Owner. - D. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation." PART 2 - PRODUCTS (Not Applicable) #### PART 3 - EXECUTION #### 3.1 EXAMINATION - A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment. - B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible. - C. Examine the approved submittals for HVAC systems and equipment. - D. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed. - E. Examine test reports specified in individual system and equipment Sections. - F. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation. - G. Examine operating safety interlocks and controls on HVAC equipment. - H. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values. #### 3.2 PREPARATION - A. Prepare a TAB plan that includes strategies and step-by-step procedures. - B. Complete system-readiness checks and prepare reports. Verify the following: - 1. Permanent electrical-power wiring is complete. - 2. Equipment and duct access doors are securely closed. #### 3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING - A. Perform testing and balancing procedures on each system according to the procedures contained in NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and in this Section. - 1. Comply with requirements in ASHRAE 62.1-2004, Section 7.2.2, "Air Balancing." - B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures. - After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts. - 2. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Division 15 Section "HVAC Insulation." - C. Take and report testing and balancing measurements in inch-pound (IP) units. #### 3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS - A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes. - B. Prepare schematic diagrams of systems' "as-built" duct layouts. - C. Locate start-stop and disconnect switches, electrical interlocks, and motor starters. - D. Verify that motor starters are equipped with properly sized thermal protection. - E. Check dampers for proper position to achieve desired airflow path. - F. Check for airflow blockages. - G. Check condensate drains for proper connections and functioning. - H. Check for proper sealing of air-handling-unit components. - I. Verify that air duct system is sealed as specified in Division 15 Section "Metal Ducts." #### 3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS - A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer. - Measure total airflow. - 2. Measure fan static pressures as follows to determine actual static pressure: - a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions. - b. Measure static pressure directly at the fan outlet or through the flexible connection. - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions. - d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan. - 3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment. - a. Report the cleanliness status of filters and the time static pressures are measured. - 4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions. - 5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions. - 6. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in Division 15 Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance. - 7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower. - B. Measure air outlets and inlets without making adjustments. - Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors. - C. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals. - 1. Adjust patterns of adjustable outlets for proper distribution without drafts. #### 3.6 PROCEDURES FOR MOTORS - A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data: - 1. Manufacturer's name, model number, and serial number. - 2. Motor horsepower rating. - 3. Motor rpm. - 4. Efficiency rating. - 5. Nameplate and measured voltage, each phase. - 6. Nameplate and measured amperage, each phase. - Starter thermal-protection-element rating. - B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data. #### 3.7 REPORTING - A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices. - B. Status Reports: Prepare monthly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors. ### 3.8 FINAL REPORT - A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems. - Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer. - 2. Include a list of instruments used for procedures, along with proof of calibration. - B. Final Report Contents: In addition to certified field-report data, include the following: - Fan curves. - Other information relative to equipment performance; do not include Shop Drawings and product data. - C. General Report Data: In addition to form titles and entries, include the following data: - 1. Title page. - 2. Name and address of the TAB contractor. - Project name. - 4. Project location. - 5. Architect's name and address. - 6. Engineer's name and address. - 7. Contractor's name and address. - 8. Report date. - 9. Signature of TAB supervisor who certifies the report. - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report. -
11. Summary of contents including the following: - a. Indicated versus final performance. - b. Notable characteristics of systems. - c. Description of system operation sequence if it varies from the Contract Documents. - 12. Nomenclature sheets for each item of equipment. - 13. Notes to explain why certain final data in the body of reports vary from indicated values. - 14. Test conditions for fans and pump performance forms including the following: - a. Conditions of filters. - b. Evaporative section, inlet and outlet wet- and dry-bulb conditions. - c. Fan drive settings including settings and percentage of maximum pitch diameter. - d. Other system operating conditions that affect performance. #### 3.9 ADDITIONAL TESTS A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions. **END OF SECTION 15950** This page intentionally left blank. ### SECTION 260500 - COMMON WORK RESULTS FOR ELECTRICAL # PART 1 - GENERAL # 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY ### A. Section Includes: - 1. Electrical equipment coordination and installation. - 2. Sleeves for raceways and cables. - 3. Sleeve seals. - 4. Grout. - 5. Common electrical installation requirements. ## 1.3 DEFINITIONS - A. EPDM: Ethylene-propylene-diene terpolymer rubber. - B. NBR: Acrylonitrile-butadiene rubber. # 1.4 SUBMITTALS A. Product Data: For sleeve seals. # 1.5 COORDINATION - A. Coordinate arrangement, mounting, and support of electrical equipment: - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated. - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations. - 3. To allow right of way for piping and conduit installed at required slope. - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment. - B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed. - C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames." - D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."." #### PART 2 - PRODUCTS ### 2.1 SLEEVES FOR RACEWAYS AND CABLES - A. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated. - B. Sleeves for Rectangular Openings: Galvanized sheet steel. - 1. Minimum Metal Thickness: - a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and no side more than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm). - b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches (1270 mm) and 1 or more sides equal to, or more than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm). ### 2.2 SLEEVE SEALS - A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable. - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - a. Advance Products & Systems, Inc. - b. Calpico, Inc. - c. Metraflex Co. - d. Pipeline Seal and Insulator, Inc. - Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable. - 3. Pressure Plates: Stainless steel. Include two for each sealing element. - 4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element. # 2.3 GROUT A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time. # PART 3 - EXECUTION ### 3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION - A. Comply with NECA 1. - B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items. - C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements. - D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity. - E. Right of Way: Give to piping systems installed at a required slope. ### 3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS - A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies. - B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls. - C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening. - D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall. - E. Cut sleeves to length for mounting flush with both surfaces of walls. - F. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level. - G. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable, unless indicated otherwise. - H. Seal space outside of sleeves with grout for penetrations of concrete and masonry - 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing. - I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants.". - J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping." - K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work. - L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using cast-iron pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals. # 3.3 SLEEVE-SEAL INSTALLATION - A. Install to seal exterior wall penetrations. - B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal. # 3.4 FIRESTOPPING A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping." **END OF SECTION 260500** ### SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES # PART 1 - GENERAL ### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ## 1.2 SUMMARY - A. This Section includes the following: - 1. Building wires and cables rated 600 V and less. - 2. Connectors, splices, and terminations rated 600 V and less. - 3. Sleeves and sleeve seals for cables. #### 1.3 DEFINITIONS - A. EPDM: Ethylene-propylene-diene terpolymer rubber. - B. NBR: Acrylonitrile-butadiene rubber. # 1.4 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Qualification Data: For testing agency. - C. Field quality-control test reports. # 1.5 QUALITY ASSURANCE - A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction. - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3. - B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. - C. Comply with NFPA 70. # 1.6 COORDINATION A. Set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed. #
PART 2 - PRODUCTS # 2.1 CONDUCTORS AND CABLES - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Alcan Products Corporation; Alcan Cable Division. - 2. American Insulated Wire Corp.; a Leviton Company. - 3. General Cable Corporation. - 4. Senator Wire & Cable Company. - 5. Southwire Company. - B. Copper Conductors: Comply with NEMA WC 70. - C. Conductor Insulation: Comply with NEMA WC 70 for Types THHN-THWN. # 2.2 CONNECTORS AND SPLICES - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. AFC Cable Systems, Inc. - 2. Hubbell Power Systems, Inc. - 3. O-Z/Gedney; EGS Electrical Group LLC. - 4. 3M; Electrical Products Division. - 5. Tyco Electronics Corp. - B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated. # 2.3 SLEEVES FOR CABLES A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends. - B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated. - C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application. - D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping." ## 2.4 SLEEVE SEALS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Advance Products & Systems, Inc. - 2. Calpico, Inc. - 3. Metraflex Co. - 4. Pipeline Seal and Insulator, Inc. - B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable. - Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable. - 2. Pressure Plates: Stainless steel. Include two for each sealing element. - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element. # PART 3 - EXECUTION # 3.1 CONDUCTOR MATERIAL APPLICATIONS - A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger. - B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger. - 3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS - A. Service Entrance: Type THHN-THWN, single conductors in raceway. - B. Exposed Feeders: Type THHN-THWN, single conductors in raceway. - C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN-THWN, single conductors in raceway. - D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway. - E. Feeders Installed below Raised Flooring: Type THHN-THWN, single conductors in raceway. - F. Exposed Branch Circuits, Including in Crawlspaces: Type THHN-THWN, single conductors in raceway. - G. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway. - H. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway. - I. Branch Circuits Installed below Raised Flooring: Type THHN-THWN, single conductors in raceway. - J. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application. - K. Class 1 Control Circuits: Type THHN-THWN, in raceway. - L. Class 2 Control Circuits: Type THHN-THWN, in raceway. # 3.3 INSTALLATION OF CONDUCTORS AND CABLES - A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated. - B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values. - C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway. - D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible. - E. Support cables according to Division 26 Section "Hangers and Supports for Electrical Systems." - F. Identify and color-code conductors and cables according to Division 26 Section "Identification for Electrical Systems." # 3.4 CONNECTIONS A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B. - B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors. - 1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors. - C. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches (300 mm) of slack. ### 3.5 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS - A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping." - B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls. - C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening. - D. Rectangular Sleeve Minimum Metal Thickness: - 1. For sleeve rectangle perimeter less than 50 inches (1270 mm) and no side greater than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm). - 2. For sleeve rectangle perimeter equal to, or greater than, 50 inches (1270 mm) and 1 or more sides equal to, or greater than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm). - E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall. - F. Cut sleeves to length for mounting flush with both wall surfaces. - G. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level. - H. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and cable unless sleeve seal is to be installed. - I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies. - J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and cable, using joint sealant appropriate for size, depth, and location of joint according to Division 07 Section "Joint Sealants." - K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at cable penetrations. Install sleeves and seal with firestop materials according to Division 07 Section "Penetration Firestopping." - L. Roof-Penetration Sleeves: Seal penetration of individual cables with flexible boot-type flashing units applied in coordination with roofing work. - M. Aboveground Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Size sleeves to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals. ### 3.6 SLEEVE-SEAL INSTALLATION - A. Install to seal underground exterior-wall penetrations. - B. Use type and number of sealing elements recommended by manufacturer for cable material and size. Position cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal. #### 3.7 FIRESTOPPING A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 07 Section "Penetration Firestopping." ### 3.8 FIELD QUALITY CONTROL - A. Perform tests and inspections and prepare test reports. - B. Tests and Inspections: - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters. - 2. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in cables and conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. - a. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each splice 11 months after date of Substantial Completion. - b. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device. - c. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action. - C. Test Reports: Prepare a written report to record the following: - 1. Test procedures used. - 2. Test results that comply with requirements. - 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements. - D. Remove and replace malfunctioning units and retest as specified above. END OF SECTION 260519 ### SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS # PART 1 - GENERAL # 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01
Specification Sections, apply to this Section. ### 1.2 SUMMARY - A. This Section includes methods and materials for grounding systems and equipment, plus the following special applications: - 1. Common ground bonding with lightning protection system. # 1.3 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Other Informational Submittals: Plans showing dimensioned as-built locations of grounding features specified in Part 3 "Field Quality Control" Article, including the following: - 1. Ground rods. - 2. Grounding arrangements and connections for separately derived systems. - C. Qualification Data: For testing agency and testing agency's field supervisor. - D. Field quality-control test reports. - E. Operation and Maintenance Data: For grounding to include the following in emergency, operation, and maintenance manuals: - a. Tests shall be to determine if ground resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if they do not. - b. Include recommended testing intervals. # 1.4 QUALITY ASSURANCE A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction. - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association to supervise on-site testing specified in Part 3. - B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. - C. Comply with UL 467 for grounding and bonding materials and equipment. ## PART 2 - PRODUCTS ### 2.1 CONDUCTORS - A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction. - B. Bare Copper Conductors: - 1. Solid Conductors: ASTM B 3. - Stranded Conductors: ASTM B 8. - 3. Tinned Conductors: ASTM B 33. - 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch (6 mm) in diameter. - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor. - 6. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick. - 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick. # 2.2 CONNECTORS - A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected. - B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressuretype, with at least two bolts. - 1. Pipe Connectors: Clamp type, sized for pipe. - C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions. # 2.3 GROUNDING ELECTRODES A. Ground Rods: Copper-clad steel, sectional type; 3/4 inch by10 feet (19 mm by 3 m) in diameter. ### PART 3 - EXECUTION # 3.1 APPLICATIONS - A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger, unless otherwise indicated. - B. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow. - C. Conductor Terminations and Connections: - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors. - 2. Underground Connections: Welded connectors, except at test wells and as otherwise indicated. - 3. Connections to Ground Rods at Test Wells: Bolted connectors. - 4. Connections to Structural Steel: Welded connectors. # 3.2 EQUIPMENT GROUNDING - A. Install insulated equipment grounding conductors with all feeders and branch circuits. - B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70: - 1. Feeders and branch circuits. - 2. Lighting circuits. - 3. Receptacle circuits. - 4. Single-phase motor and appliance branch circuits. - 5. Three-phase motor and appliance branch circuits. - 6. Flexible raceway runs. - 7. Armored and metal-clad cable runs. - 8. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway. - 9. Computer and Rack-Mounted Electronic Equipment Circuits: Install insulated equipment grounding conductor in branch-circuit runs from equipment-area power panels and power-distribution units. - 10. Communications Cable Tray - C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping. - D. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated. E. Metal Poles Supporting Outdoor Cameras: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors. # 3.3 INSTALLATION - A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage. - B. Common Ground Bonding with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit. - C. Ground Rods: Drive rods until tops are 2 inches (50 mm) below finished floor or final grade, unless otherwise indicated. - 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating, if any. - 2. For grounding electrode system, install at least three rods spaced at least onerod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor. - D. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit. - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts. - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install so vibration is not transmitted to rigidly mounted equipment. - 3. Use exothermic-welded connectors for outdoor locations, but if a disconnect-type connection is required, use a bolted clamp. # E. Grounding and Bonding for Piping: Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes, using a bolted clamp connector or by bolting a lugtype connector to a pipe flange, using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street - side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end. - 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector. - 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve. - F. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet (18 m) apart. - G. Ground Ring: Install a grounding conductor, electrically connected to each building structure ground rod and to each steel column, extending around the perimeter of building. - 1. Install tinned-copper conductor not less than No. 2/0 AWG for ground ring and for taps to building steel. - 2. Bury ground ring not less than 24 inches (600 mm) from building foundation. - H. Ufer Ground (Concrete-Encased Grounding Electrode): Fabricate according to NFPA 70, using a minimum of 20 feet (6 m) of bare copper conductor not smaller than No. 2/0 AWG. - 1. If concrete foundation is less than 20 feet (6 m) long, coil excess conductor within base of foundation. - 2. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building grounding grid or to grounding electrode external to concrete. ### 3.4 FIELD QUALITY CONTROL - A. Perform the following tests and inspections and prepare test reports: - 1. After installing grounding system but before permanent
electrical circuits have been energized, test for compliance with requirements. - 2. Test completed grounding system at each location where a maximum groundresistance level is specified, at service disconnect enclosure grounding terminal, at ground test wells, and at individual ground rods. Make tests at ground rods before any conductors are connected. - a. Measure ground resistance not less than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance. - b. Perform tests by fall-of-potential method according to IEEE 81. - 3. Prepare dimensioned drawings locating each test well, ground rod and ground rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results. - B. Report measured ground resistances that exceed the following values: - 1. Power and Lighting Equipment or System with Capacity 500 kVA and Less: 10 ohms. - 2. Power and Lighting Equipment or System with Capacity 500 to 1000 kVA: 5 ohms. - C. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance. END OF SECTION 260526 ### SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS ### PART 1 - GENERAL # 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ### 1.2 SUMMARY - A. This Section includes the following: - 1. Hangers and supports for electrical equipment and systems. - 2. Construction requirements for concrete bases. - B. Related Sections include the following: - 1. Division 26 Section "Vibration And Seismic Controls For Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria. # 1.3 DEFINITIONS - A. EMT: Electrical metallic tubing. - B. IMC: Intermediate metal conduit. - C. RMC: Rigid metal conduit. # 1.4 PERFORMANCE REQUIREMENTS - A. Delegated Design: Design supports for multiple raceways, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated. - B. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents. - C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components. - D. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force. # 1.5 SUBMITTALS - A. Product Data: For the following: - 1. Steel slotted support systems. - B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following: - 1. Trapeze hangers. Include Product Data for components. - 2. Steel slotted channel systems. Include Product Data for components. - 3. Nonmetallic slotted channel systems. Include Product Data for components. - 4. Equipment supports. - C. Welding certificates. ### 1.6 QUALITY ASSURANCE - A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel." - B. Comply with NFPA 70. # 1.7 COORDINATION - A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03. - B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories." ### PART 2 - PRODUCTS # 2.1 SUPPORT. ANCHORAGE. AND ATTACHMENT COMPONENTS - A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly. - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. Allied Tube & Conduit. - b. Cooper B-Line, Inc.; a division of Cooper Industries. - c. ERICO International Corporation. - d. GS Metals Corp. - e. Thomas & Betts Corporation. - f. Unistrut; Tyco International, Ltd. - g. Wesanco, Inc. - 2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4. - 3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4. - 4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4. - 5. Channel Dimensions: Selected for applicable load criteria. - 6. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. Allied Tube & Conduit. - b. Cooper B-Line, Inc.; a division of Cooper Industries. - c. Fabco Plastics Wholesale Limited. - d. Seasafe, Inc. - 7. Fittings and Accessories: Products of channel and angle manufacturer and designed for use with those items. - 8. Fitting and Accessory Materials: Same as channels and angles, except metal items may be stainless steel. - 9. Rated Strength: Selected to suit applicable load criteria. - B. Raceway and Cable Supports: As described in NECA 1 and NECA 101. - C. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported. - D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron. - E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized. - F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following: - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used. - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1) Hilti Inc. - 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc. - 3) MKT Fastening, LLC. - 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit. - 2. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used. - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1) Cooper B-Line, Inc.; a division of Cooper Industries. - 2) Empire Tool and Manufacturing Co., Inc. - 3) Hilti Inc. - 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc. - 5) MKT Fastening, LLC. - 3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58. - 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element. - 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325. - 6. Toggle Bolts: All-steel springhead type. - 7. Hanger Rods: Threaded steel. ### 2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES - A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment. - B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates. #### PART 3 - EXECUTION ### 3.1 APPLICATION - A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter. - B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as scheduled in NECA 1, where its Table 1 lists maximum spacing is less than stated in NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter. - C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slottedsupport system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits. - 1. Secure raceways and cables to these supports with two-bolt conduit clamps. D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch (38-mm) and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports. # 3.2 SUPPORT INSTALLATION - A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article. - B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70. - C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg). - D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless
otherwise indicated by code: - 1. To Wood: Fasten with lag screws or through bolts. - 2. To New Concrete: Bolt to concrete inserts. - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units. - 4. To Existing Concrete: Expansion anchor fasteners. - 5. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts. - 6. To Light Steel: Sheet metal screws. - 7. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate. - E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars. # 3.3 INSTALLATION OF FABRICATED METAL SUPPORTS - A. Comply with installation requirements in Division 05 Section "Metal Fabrications" for site-fabricated metal supports. - B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment. - C. Field Welding: Comply with AWS D1.1/D1.1M. # 3.4 CONCRETE BASES - A. Construct concrete bases of dimensions indicated but not less than 4 inches (100 mm) larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base. - B. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Division 03 Section "Castin-Place Concrete." - C. Anchor equipment to concrete base. - 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded. - 2. Install anchor bolts to elevations required for proper attachment to supported equipment. - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions. #### 3.5 PAINTING - A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces. - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm). - B. Touchup: Comply with requirements in Division 09 painting Sections for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal. - C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780. **END OF SECTION 260529** #### SECTION 260533 - RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS # PART 1 - GENERAL # 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring. - B. Related Sections include the following: - 1. Division 26 Section "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction. # 1.3 DEFINITIONS - A. EMT: Electrical metallic tubing. - B. ENT: Electrical nonmetallic tubing. - C. EPDM: Ethylene-propylene-diene terpolymer rubber. - D. FMC: Flexible metal conduit. - E. IMC: Intermediate metal conduit. - F. LFMC: Liquidtight flexible metal conduit. - G. LFNC: Liquidtight flexible nonmetallic conduit. - H. NBR: Acrylonitrile-butadiene rubber. - I. RNC: Rigid nonmetallic conduit. # 1.4 SUBMITTALS A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets. - B. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work. - 1. Custom enclosures and cabinets. - 2. For handholes and boxes for underground wiring, including the following: - a. Duct entry provisions, including locations and duct sizes. - b. Frame and cover design. - c. Grounding details. - d. Dimensioned locations of cable rack inserts, and pulling-in and lifting irons. - e. Joint details. - C. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved: - 1. Structural members in the paths of conduit groups with common supports. - 2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports. - D. Manufacturer Seismic Qualification Certification: Submit certification that enclosures and cabinets and their mounting provisions, including those for internal components, will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following: - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. - a. The term "withstand" means "the cabinet or enclosure will remain in place without separation of any parts when subjected to the seismic forces specified." - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements. - E. Qualification Data: For professional engineer and testing agency. - F. Source quality-control test reports. #### 1.5 QUALITY ASSURANCE - A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. - B. Comply with NFPA 70. #### PART 2 - PRODUCTS # 2.1 METAL CONDUIT AND TUBING - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. AFC Cable Systems, Inc. - 2. Alflex Inc. - 3. Allied Tube & Conduit; a Tyco International Ltd. Co. - 4. Anamet Electrical, Inc.; Anaconda Metal Hose. - 5. Electri-Flex Co. - 6. Manhattan/CDT/Cole-Flex. - 7. Maverick Tube Corporation. - 8. O-Z Gedney; a unit of General Signal. - 9. Wheatland Tube Company. - B. Rigid Steel Conduit: ANSI C80.1. - C. IMC: ANSI C80.6. - D. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit. - 1. Comply with NEMA RN 1. - 2. Coating Thickness: 0.040 inch (1 mm), minimum. - E. EMT: ANSI C80.3. - F. FMC: Zinc-coated steel. - G. LFMC: Flexible steel conduit with PVC jacket. - H. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed. - Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886. - 2. Fittings for EMT: Steel or die-cast, set-screw or compression type. - 3. Coating for Fittings for PVC-Coated Conduit: Minimum thickness, 0.040 inch (1 mm), with overlapping sleeves protecting threaded joints. - I. Joint Compound for Rigid Steel Conduit or IMC: Listed for use in cable connector assemblies, and compounded for use to lubricate and protect threaded raceway joints from corrosion and enhance their conductivity. # 2.2 NONMETALLIC CONDUIT AND TUBING A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - B. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. AFC Cable Systems, Inc. - 2. Anamet Electrical, Inc.; Anaconda Metal Hose. - 3. Arnco Corporation. - 4. CANTEX Inc. - 5. CertainTeed Corp.; Pipe & Plastics Group. - 6. Condux International, Inc. - 7. ElecSYS, Inc. - 8. Electri-Flex Co. - 9. Lamson & Sessions; Carlon Electrical Products. - 10. Manhattan/CDT/Cole-Flex. - 11. RACO; a Hubbell Company. - 12. Thomas & Betts Corporation. - C. ENT: NEMA TC 13. - D. RNC: NEMA TC 2, Type EPC-40-PVC, unless otherwise indicated. - E. LFNC: UL 1660. - F. Fittings for ENT and RNC: NEMA TC 3; match to conduit or tubing type and material. - G. Fittings for LFNC: UL 514B. # 2.3 OPTICAL FIBER/COMMUNICATIONS CABLE RACEWAY AND FITTINGS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Arnco Corporation. - 2. Endot Industries Inc. - IPEX Inc. - 4. Lamson & Sessions; Carlon Electrical Products. - B. Description: Comply with UL 2024; flexible type, approved for plenum installation. #### 2.4 METAL WIREWAYS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Cooper B-Line, Inc. - Hoffman. - Square D; Schneider Electric. - B. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 3R, unless otherwise indicated. - C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system. - D. Wireway Covers: Hinged type. - E. Finish: Manufacturer's standard enamel finish. # 2.5 SURFACE RACEWAYS - A. Surface Metal Raceways: Galvanized steel with snap-on covers. Manufacturer's standard enamel finish in color selected by Architect. - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. Thomas & Betts Corporation. - b. Walker Systems, Inc.; Wiremold Company (The). - c. Wiremold Company (The); Electrical Sales Division. - B. Surface Nonmetallic
Raceways: Two-piece construction, manufactured of rigid PVC with texture and color selected by Architect from manufacturer's standard colors. - Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. Butler Manufacturing Company; Walker Division. - b. Enduro Systems, Inc.: Composite Products Division. - c. Hubbell Incorporated; Wiring Device-Kellems Division. - d. Lamson & Sessions; Carlon Electrical Products. - e. Panduit Corp. - f. Walker Systems, Inc.; Wiremold Company (The). - g. Wiremold Company (The); Electrical Sales Division. #### 2.6 BOXES, ENCLOSURES, AND CABINETS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc. - 2. EGS/Appleton Electric. - 3. Erickson Electrical Equipment Company. - 4. Hoffman. - 5. Hubbell Incorporated; Killark Electric Manufacturing Co. Division. - 6. O-Z/Gedney; a unit of General Signal. - 7. RACO; a Hubbell Company. - 8. Robroy Industries, Inc.; Enclosure Division. - 9. Scott Fetzer Co.: Adalet Division. - 10. Spring City Electrical Manufacturing Company. - 11. Thomas & Betts Corporation. - 12. Walker Systems, Inc.; Wiremold Company (The). - 13. Woodhead, Daniel Company; Woodhead Industries, Inc. Subsidiary. - B. Sheet Metal Outlet and Device Boxes: NEMA OS 1. - C. Cast-Metal Outlet and Device Boxes: NEMA FB 1, ferrous alloy, Type FD, with gasketed cover. - D. Metal Floor Boxes: Cast metal, fully adjustable, rectangular. - E. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1. - F. Cast-Metal Access, Pull, and Junction Boxes: NEMA FB 1, galvanized, cast iron with gasketed cover. - G. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous-hinge cover with flush latch, unless otherwise indicated. - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel. #### H. Cabinets: - 1. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel. - 2. Hinged door in front cover with flush latch and concealed hinge. - 3. Key latch to match panelboards. - 4. Metal barriers to separate wiring of different systems and voltage. - 5. Accessory feet where required for freestanding equipment. # 2.7 SLEEVES FOR RACEWAYS - A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends. - B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated. - C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application. - D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping." # 2.8 SLEEVE SEALS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Advance Products & Systems, Inc. - 2. Calpico, Inc. - 3. Metraflex Co. - 4. Pipeline Seal and Insulator, Inc. - B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable. - Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable. - 2. Pressure Plates: Stainless steel. Include two for each sealing element. - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element. #### 2.9 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES - A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied. - 1. Tests of materials shall be performed by a independent testing agency. - 2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer. - 3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012, and traceable to NIST standards. # PART 3 - EXECUTION # 3.1 RACEWAY APPLICATION - A. Outdoors: Apply raceway products as specified below, unless otherwise indicated: - 1. Exposed Conduit: Rigid steel conduit. - 2. Concealed Conduit, Aboveground: Rigid steel or IMC conduit. - 3. Underground Conduit: RNC, Type EPC-40-PVC, direct buried. - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC. - 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R. - B. Comply with the following indoor applications, unless otherwise indicated: - 1. Exposed, Not Subject to Physical Damage: EMT. - 2. Exposed, Not Subject to Severe Physical Damage: EMT. - 3. Exposed and Subject to Severe Physical Damage: Rigid steel conduit. Includes raceways in the following locations: - a. Loading dock. - b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units. - c. Mechanical rooms. - 4. Concealed in Ceilings and Interior Walls and Partitions: EMT. - 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations. - 6. Damp or Wet Locations: Rigid steel conduit. - 7. Raceways for Optical Fiber or Communications Cable in Spaces Used for Environmental Air: Plenum-type, optical fiber/communications cable raceway. - 8. Raceways for Optical Fiber or Communications Cable Risers in Vertical Shafts: Riser-type, optical fiber/communications cable raceway. - 9. Raceways for Concealed General Purpose Distribution of Optical Fiber or Communications Cable: Riser-type, optical fiber/communications cable raceway Plenum-type, optical fiber/communications cable raceway. - Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4, stainless steel in damp or wet locations. - C. Minimum Raceway Size: 3/4-inch (21-mm) trade size. - D. Raceway Fittings: Compatible with raceways and suitable for use and location. - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated. - PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with that material. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer. - E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve. - F. Do not install aluminum conduits in contact with concrete. #### 3.2 INSTALLATION - A. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter. - B. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping. - C. Complete raceway installation before starting conductor installation. - D. Support raceways as specified in Division 26 Section "Hangers and Supports for Electrical Systems." - E. Arrange stub-ups so curved portions of bends are not visible above the finished slab. - F. Install no more than the equivalent of three 90-degree bends in any conduit run except for communications conduits, for which fewer bends are allowed. - G. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated. - H. Raceways Embedded in Slabs: - 1. Run conduit larger than 1-inch (27-mm) trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings. - 3. Change from ENT to RNC, Type EPC-40-PVC, rigid steel conduit, or IMC before rising above the floor. - I. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions. - J. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG. - K. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire. - L. Raceways for Optical Fiber and Communications Cable: Install raceways, metallic and nonmetallic, rigid and flexible, as follows: - 1. 3/4-Inch (19-mm) Trade Size and Smaller: Install raceways in maximum lengths of 50 feet (15 m). - 2. 1-Inch (25-mm) Trade Size and Larger: Install raceways in maximum lengths of 75 feet (23 m). - 3. Install with a maximum of two 90-degree bends or equivalent for each length of raceway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements. - M. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points: - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces. - 2. Where otherwise required by NFPA 70. -
N. Flexible Conduit Connections: Use maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed lighting fixtures, equipment subject to vibration, noise transmission, or movement; and for transformers and motors. - 1. Use LFMC in damp or wet locations subject to severe physical damage. - 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage. - O. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. - P. Set metal floor boxes level and flush with finished floor surface. - Q. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface. # 3.3 INSTALLATION OF UNDERGROUND CONDUIT #### A. Direct-Buried Conduit: - 1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Division 31 Section "Earth Moving" for pipe less than 6 inches (150 mm) in nominal diameter. - 2. Install backfill as specified in Division 31 Section "Earth Moving." - 3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches (300 mm) of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Division 31 Section "Earth Moving." - 4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through the floor, unless otherwise indicated. Encase elbows for stub-up ducts throughout the length of the elbow. - 5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor. - a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete. - b. For stub-ups at equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches (1500 mm) from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment. - 6. Warning Planks: Bury warning planks approximately 12 inches (300 mm) above direct-buried conduits, placing them 24 inches (600 mm) o.c. Align planks along the width and along the centerline of conduit. # 3.4 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS - A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping." - B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls. - C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening. - D. Rectangular Sleeve Minimum Metal Thickness: - 1. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and no side greater than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm). - 2. For sleeve cross-section rectangle perimeter equal to, or greater than, 50 inches (1270 mm) and 1 or more sides equal to, or greater than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm). - E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall. - F. Cut sleeves to length for mounting flush with both surfaces of walls. - G. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level. - H. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway unless sleeve seal is to be installed or unless seismic criteria require different clearance. - I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies. - J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway, using joint sealant appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation. - K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway penetrations. Install sleeves and seal with firestop materials. Comply with Division 07 Section "Penetration Firestopping." - L. Roof-Penetration Sleeves: Seal penetration of individual raceways with flexible, boot-type flashing units applied in coordination with roofing work. - M. Aboveground, Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals. N. Underground, Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway and sleeve for installing mechanical sleeve seals. #### 3.5 SLEEVE-SEAL INSTALLATION - A. Install to seal underground, exterior wall penetrations. - B. Use type and number of sealing elements recommended by manufacturer for raceway material and size. Position raceway in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal. # 3.6 FIRESTOPPING A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping." # 3.7 PROTECTION - A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion. - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer. - 2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer. **END OF SECTION 260533** #### SECTION 260548 - VIBRATION AND SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS # PART 1 - GENERAL # 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following: - 1. Channel support systems. - 2. Restraint cables. - 3. Hanger rod stiffeners. - 4. Anchorage bushings and washers. - B. Related Sections include the following: - 1. Division 26 Section "Hangers And Supports For Electrical Systems" for commonly used electrical supports and installation requirements. # 1.3 DEFINITIONS - A. The IBC: International Building Code. - B. ICC-ES: ICC-Evaluation Service. - C. OSHPD: Office of Statewide Health Planning and Development for the State of California. ## 1.4 PERFORMANCE REQUIREMENTS A. Seismic-Restraint Loading: Coordinate all seismic performance requirements with structural engineer. # 1.5 SUBMITTALS - A. Product Data: For the following: - 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device. - 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used. - a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an agency acceptable to authorities having jurisdiction. - b. Annotate to indicate application of each product submitted and compliance with requirements. - 3. Restrained-Isolation Devices: Include ratings for horizontal, vertical, and combined loads. - B. Delegated-Design Submittal: For vibration isolation and seismic-restraint details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation. - 1. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, seismic forces required to select vibration isolators and seismic restraints. - a. Coordinate design calculations with wind-load calculations required for equipment mounted outdoors. Comply with requirements in other Division 26 Sections for equipment mounted outdoors. - 2. Indicate materials and dimensions and identify hardware, including attachment and anchorage devices. - 3. Field-fabricated supports. - 4. Seismic-Restraint Details: - a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads. - b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices. - c. Preapproval and Evaluation Documentation: By an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations). - C. Coordination Drawings: Show coordination of seismic bracing for electrical components with other systems and equipment in the vicinity, including other supports and seismic restraints. - D. Welding certificates. - E. Qualification Data: For professional engineer and testing agency. - F. Field quality-control test reports. # 1.6 QUALITY ASSURANCE - A. Testing Agency Qualifications: An independent agency, with the
experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction. - B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent. - C. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel." - D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer. - E. Comply with NFPA 70. # PART 2 - PRODUCTS # 2.1 SEISMIC-RESTRAINT DEVICES - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Amber/Booth Company, Inc. - 2. California Dynamics Corporation. - 3. Cooper B-Line, Inc.; a division of Cooper Industries. - 4. Hilti Inc. - 5. Loos & Co.; Seismic Earthquake Division. - Mason Industries. - 7. TOLCO Incorporated; a brand of NIBCO INC. - 8. Unistrut; Tyco International, Ltd. - B. General Requirements for Restraint Components: Rated strengths, features, and application requirements shall be as defined in reports by an agency acceptable to authorities having jurisdiction. - 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected. - C. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces. - D. Restraint Cables: ASTM A 492 stainless-steel cables with end connections made of steel assemblies with thimbles, brackets, swivels, and bolts designed for restraining cable service; and with a minimum of two clamping bolts for cable engagement. - E. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod. Do not weld stiffeners to rods. - F. Bushings for Floor-Mounted Equipment Anchor: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchors and studs. - G. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices. - H. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face. - I. Mechanical Anchor: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchors with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter. - J. Adhesive Anchor: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488. #### 2.2 FACTORY FINISHES - A. Finish: Manufacturer's standard prime-coat finish ready for field painting. - B. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping. - 1. Powder coating on springs and housings. - 2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use. - 3. Baked enamel or powder coat for metal components on isolators for interior use. - 4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range. #### PART 3 - EXECUTION # 3.1 EXAMINATION - A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance. - B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation. - C. Proceed with installation only after unsatisfactory conditions have been corrected. # 3.2 APPLICATIONS - A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction. - B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces. - C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits. # 3.3 SEISMIC-RESTRAINT DEVICE INSTALLATION - A. Equipment and Hanger Restraints: - 1. Install restrained isolators on electrical equipment. - 2. Install resilient, bolt-isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch (3.2 mm). - Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component. - B. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall. - C. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members. - D. Drilled-in Anchors: - 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines. - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength. - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened. - 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive. - 5. Set anchors to manufacturer's recommended torque, using a torque wrench. - 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications. #### 3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION A. Install flexible connections in runs of raceways, cables, wireways, cable trays, and busways where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where they terminate with connection to equipment that is anchored to a different structural element from the one supporting them as they approach equipment. # 3.5 FIELD QUALITY CONTROL - A. Perform tests and inspections. - B. Tests and Inspections: - 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction. - 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice. - 3. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members. - 4. Test at least four Insert number of each type and size of installed anchors and fasteners selected by Architect. - 5. Test to 90 percent of rated proof load of device. - 6. Measure isolator restraint clearance. - 7. Measure isolator deflection. - 8. Verify snubber minimum clearances. - 9. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved. - C. Remove and replace malfunctioning units and retest as specified above. D. Prepare test and inspection reports. # 3.6 ADJUSTING - A. Adjust isolators after isolated equipment is at operating weight. - B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation. - C. Adjust active height of spring isolators. - D. Adjust restraints to permit free movement of equipment within normal mode of operation. **END OF SECTION 260548** #### SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS # PART 1 - GENERAL # 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following: - 1. Identification for raceway and metal-clad cable. - 2. Identification for conductors and communication and control cable. - 3. Underground-line warning tape. - 4. Warning labels and
signs. - 5. Instruction signs. - 6. Equipment identification labels. - 7. Miscellaneous identification products. # 1.3 SUBMITTALS - A. Product Data: For each electrical identification product indicated. - B. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels. - C. Samples: For each type of label and sign to illustrate size, colors, lettering style, mounting provisions, and graphic features of identification products. #### 1.4 QUALITY ASSURANCE - A. Comply with ANSI A13.1 and ANSI C2. - B. Comply with NFPA 70. - C. Comply with 29 CFR 1910.145. #### 1.5 COORDINATION A. Coordinate identification names, abbreviations, colors, and other features with requirements in the Contract Documents, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual, and with those required by - codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project. - B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied. - C. Coordinate installation of identifying devices with location of access panels and doors. - D. Install identifying devices before installing acoustical ceilings and similar concealment. #### PART 2 - PRODUCTS #### 2.1 RACEWAY AND METAL-CLAD CABLE IDENTIFICATION MATERIALS - A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size. - B. Color for Printed Legend: - 1. Power Circuits: Black letters on an orange field. - 2. Legend: Indicate system or service and voltage, if applicable. - C. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weatherand chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label. - D. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action. - E. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action. - F. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; 2 inches (50 mm) wide; compounded for outdoor use. # 2.2 CONDUCTOR AND COMMUNICATION- AND CONTROL-CABLE IDENTIFICATION MATERIALS - A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide. - B. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process. - C. Aluminum Wraparound Marker Labels: Cut from 0.014-inch- (0.35-mm-) thick aluminum sheet, with stamped, embossed, or scribed legend, and fitted with tabs and matching slots for permanently securing around wire or cable jacket or around groups of conductors. - D. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch (50 by 50 by 1.3 mm), with stamped legend, punched for use with self-locking nylon tie fastener. - E. Write-On Tags: Polyester tag, 0.010 inch (0.25 mm) thick, with corrosion-resistant grommet and polyester or nylon tie for attachment to conductor or cable. - 1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer. # 2.3 UNDERGROUND-LINE WARNING TAPE - A. Description: Permanent, bright-colored, continuous-printed, polyethylene tape. - 1. Not less than 6 inches (150 mm) wide by 4 mils (0.102 mm) thick. - 2. Compounded for permanent direct-burial service. - 3. Embedded continuous metallic strip or core. - 4. Printed legend shall indicate type of underground line. # 2.4 WARNING LABELS AND SIGNS - A. Comply with NFPA 70 and 29 CFR 1910.145. - B. Self-Adhesive Warning Labels: Factory printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment, unless otherwise indicated. - C. Baked-Enamel Warning Signs: Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application. 1/4-inch (6.4-mm) grommets in corners for mounting. Nominal size, 7 by 10 inches (180 by 250 mm). - D. Metal-Backed, Butyrate Warning Signs: Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch (1-mm) galvanized-steel backing; and with colors, legend, and size required for application. 1/4-inch (6.4-mm) grommets in corners for mounting. Nominal size, 10 by 14 inches (250 by 360 mm). - E. Warning label and sign shall include, but are not limited to, the following legends: - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES." - Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES (915 MM)." # 2.5 INSTRUCTION SIGNS - A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch (1.6 mm) thick for signs up to 20 sq. in. (129 sq. cm) and 1/8 inch (3.2 mm) thick for larger sizes. - 1. Engraved legend with black letters on white face. - 2. Punched or drilled for mechanical fasteners. - 3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment. # 2.6 EQUIPMENT IDENTIFICATION LABELS - A. Adhesive Film Label: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch (10 mm). - B. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch (10 mm). Overlay shall provide a weatherproof and ultraviolet-resistant seal for label. - C. Self-Adhesive, Engraved, Laminated Acrylic or Melamine Label: Adhesive backed, with white letters on a dark-gray background. Minimum letter height shall be 3/8 inch (10 mm). - D. Engraved, Laminated Acrylic or Melamine Label: Punched or drilled for screw mounting. White letters on a dark-gray background. Minimum letter height shall be 3/8 inch (10 mm). - E. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch (25 mm). # 2.7 MISCELLANEOUS IDENTIFICATION PRODUCTS - A. Cable Ties: Fungus-inert, self-extinguishing, 1-piece, self-locking, Type 6/6 nylon cable ties. - 1. Minimum Width: 3/16 inch (5 mm). - 2. Tensile Strength: 50 lb (22.6 kg), minimum. - 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C). - 4. Color: Black, except where used for color-coding. - B. Paint: Paint materials and application requirements are specified in Division 09 painting Sections. - C. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers. #### PART 3 - EXECUTION # 3.1 APPLICATION - A. Raceways and Duct Banks More Than 600 V Concealed within Buildings: 4-inch-(100-mm-) wide black stripes on 10-inch (250-mm) centers over orange background that extends full length of raceway or duct and is 12 inches (300 mm) wide. Stencil legend "DANGER CONCEALED HIGH VOLTAGE WIRING" with 3-inch- (75-mm-) high black letters on 20-inch (500-mm) centers. Stop stripes at legends. Apply to the following finished surfaces: - 1. Floor surface directly above conduits running beneath and within 12 inches (300 mm) of a floor that is in contact with earth or is framed above unexcavated space. - 2. Wall surfaces directly external to raceways concealed within wall. - 3. Accessible surfaces of concrete envelope around raceways in vertical shafts, exposed in the building, or concealed above suspended ceilings. - B. Power-Circuit Conductor Identification: For secondary conductors No. 1/0 AWG and larger in vaults, pull and junction boxes, manholes, and handholes use color-coding conductor tape. Identify source and circuit number of each set of conductors. For single conductor cables, identify phase in addition to the above. - C. Branch-Circuit Conductor Identification: Where there are conductors for more than three branch circuits in same junction or pull box, use color-coding conductor tape aluminum wraparound marker labels. Identify each ungrounded conductor according to source and circuit number. - D. Conductors to Be Extended in the Future: Attach write-on tags to conductors and list source and circuit number. - E. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, signal, sound, intercommunications, voice, and data connections. - 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation. - 2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections. - 3. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and Operation and Maintenance Manual. - F. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical fiber cable. - G. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Comply with 29 CFR 1910.145 and apply baked-enamel warning signs. Identify system voltage with black letters on an orange background. Apply to exterior of door, cover, or other access. - 1. Equipment with Multiple Power or Control Sources: Apply to door or cover of equipment including, but not limited to, the following: - a. Power transfer switches. - b. Controls with external control power connections. - 2. Equipment Requiring Workspace Clearance According to NFPA 70: Unless otherwise indicated, apply to door or cover of equipment but not on flush panelboards and similar equipment in finished spaces. #
H. Instruction Signs: - Operating Instructions: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation. - 2. Emergency Operating Instructions: Install instruction signs with white legend on a red background with minimum 3/8-inch- (10-mm-) high letters for emergency instructions at equipment used for power transfer. - I. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification. # 1. Labeling Instructions: - a. Indoor Equipment: Engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where 2 lines of text are required, use labels 2 inches (50 mm) high. - b. Outdoor Equipment: Engraved, laminated acrylic or melamine label. - c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor. # 2. Equipment to Be Labeled: - a. Panelboards, electrical cabinets, and enclosures. - b. Access doors and panels for concealed electrical items. - c. Electrical switchgear and switchboards. - d. Transformers. - e. Electrical substations. - f. Emergency system boxes and enclosures. - g. Motor-control centers. - h. Disconnect switches. - i. Enclosed circuit breakers. - j. Motor starters. - k. Push-button stations. - I. Power transfer equipment. - m. Contactors. - n. Remote-controlled switches, dimmer modules, and control devices. - o. Battery inverter units. - p. Battery racks. - q. Power-generating units. - r. Voice and data cable terminal equipment. - s. Master clock and program equipment. - t. Intercommunication and call system master and staff stations. - u. Television/audio components, racks, and controls. - v. Fire-alarm control panel and annunciators. - w. Security and intrusion-detection control stations, control panels, terminal cabinets, and racks. - x. Monitoring and control equipment. - y. Uninterruptible power supply equipment. - z. Terminals, racks, and patch panels for voice and data communication and for signal and control functions. # 3.2 INSTALLATION - A. Verify identity of each item before installing identification products. - B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. - C. Apply identification devices to surfaces that require finish after completing finish work. - D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device. - E. Attach nonadhesive signs and plastic labels with screws and auxiliary hardware appropriate to the location and substrate. - F. System Identification Color Banding for Raceways and Cables: Each color band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas. - G. Color-Coding for Phase and Voltage Level Identification, 600 V and Less: Use the colors listed below for ungrounded service, feeder, and branch-circuit conductors. - 1. Color shall be factory applied or, for sizes larger than No. 10 AWG if authorities having jurisdiction permit, field applied. - 2. Colors for 208/120-V Circuits: - a. Phase A: Black. - b. Phase B: Red. - c. Phase C: Blue. - 3. Colors for 480/277-V Circuits: - a. Phase A: Brown.b. Phase B: Orange.c. Phase C: Yellow. - 4. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings. - H. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility. - I. Underground-Line Warning Tape: During backfilling of trenches install continuous underground-line warning tape directly above line at 6 to 8 inches (150 to 200 mm) below finished grade. Use multiple tapes where width of multiple lines installed in a common trenchexceeds 16 inches (400 mm) overall. - J. Painted Identification: Prepare surface and apply paint according to Division 09 painting Sections. **END OF SECTION 260553** #### SECTION 260923 - LIGHTING CONTROL DEVICES # PART 1 - GENERAL # 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following lighting control devices: - Indoor occupancy sensors. - B. Related Sections include the following: - 1. Division 16 Section "Wiring Devices" for wall-box dimmers, wall-switch occupancy sensors, and manual light switches. # 1.3 DEFINITIONS - A. LED: Light-emitting diode. - B. PIR: Passive infrared. # 1.4 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Shop Drawings: Show installation details for occupancy and light-level sensors. - 1. Interconnection diagrams showing field-installed wiring. - C. Field quality-control test reports. - D. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals. # 1.5 QUALITY ASSURANCE A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. # 1.6 COORDINATION A. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression system, and partition assemblies. # PART 2 - PRODUCTS #### 2.1 TIME SWITCHES - A. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include the following: - 1. Area Lighting Research, Inc.; Tyco Electronics. - 2. Grasslin Controls Corporation; a GE Industrial Systems Company. - 3. Intermatic, Inc. - 4. Leviton Mfg. Company Inc. - 5. Lightolier Controls; a Genlyte Company. - 6. Lithonia Lighting; Acuity Lighting Group, Inc. - 7. Paragon Electric Co.; Invensys Climate Controls. - 8. Square D; Schneider Electric. - 9. TORK. - 10. Touch-Plate, Inc. - 11. Watt Stopper (The). # 2.2 INDOOR OCCUPANCY SENSORS - A. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include the following: - 1. Leviton Mfg. Company Inc. - 2. Novitas, Inc. - 3. Sensor Switch, Inc. - 4. Watt Stopper (The). - B. General Description: Wall- or ceiling-mounting, solid-state units with a separate relay unit. - 1. Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes. - 2. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor shall be powered from the relay unit. - 3. Relay Unit: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Power supply to sensor shall be 24-V dc, 150-mA, Class 2 power source as defined by NFPA 70. - 4. Mounting: - a. Sensor: Suitable for mounting in any position on a standard outlet box. - b. Relay: Externally mounted through a 1/2-inch (13-mm) knockout in a standard electrical enclosure. - c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door. - 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor. - 6. Bypass Switch: Override the on function in case of sensor failure. - 7. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc (21.5 to 2152 lx); keep lighting off when selected lighting level is present. - C. Dual-Technology Type: Ceiling mounting; detect occupancy by using a combination of PIR and ultrasonic detection methods in area of coverage. Particular technology or combination of technologies that controls on-off functions shall be selectable in the field by operating controls on unit. - 1. Sensitivity Adjustment: Separate for each sensing technology. - 2. Detector Sensitivity: Detect occurrences of 6-inch- (150-mm-) minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. (232 sq. cm), and detect a person of average size and weight moving not less than 12 inches (305 mm) in either a horizontal or a vertical manner at an approximate speed of 12 inches/s (305 mm/s). - 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. (93 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling. # 2.3 CONDUCTORS AND CABLES - A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables." - B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG.
Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables." - C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables." #### PART 3 - EXECUTION # 3.1 SENSOR INSTALLATION A. Install and aim sensors in locations to achieve not less than 90 percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions. # 3.2 CONTACTOR INSTALLATION A. Mount electrically held lighting contactors with elastomeric isolator pads, to eliminate structure-borne vibration, unless contactors are installed in an enclosure with factory-installed vibration isolators. # 3.3 WIRING INSTALLATION - A. Wiring Method: Comply with Division 26 Section "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size shall be 1/2 inch (13 mm). - B. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions. - C. Size conductors according to lighting control device manufacturer's written instructions, unless otherwise indicated. - D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. # 3.4 IDENTIFICATION - A. Identify components and power and control wiring according to Division 26 Section "Identification for Electrical Systems." - 1. Identify controlled circuits in lighting contactors. - 2. Identify circuits or luminaries controlled by photoelectric and occupancy sensors at each sensor. - B. Label time switches and contactors with a unique designation. # 3.5 FIELD QUALITY CONTROL - A. Perform the following field tests and inspections and prepare test reports: - 1. After installing time switches and sensors, and after electrical circuitry has been energized, adjust and test for compliance with requirements. - 2. Operational Test: Verify operation of each lighting control device, and adjust time delays. - B. Lighting control devices that fail tests and inspections are defective work. # 3.6 ADJUSTING A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting sensors to suit occupied conditions. Provide up to two Insert number visits to Project during other-than-normal occupancy hours for this purpose. # 3.7 DEMONSTRATION - A. Coordinate demonstration of products specified in this Section with demonstration requirements for low-voltage, programmable lighting control system specified in Division 26 Section "Network Lighting Controls." - B. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices. Refer to Division 01 Section "Demonstration and Training." END OF SECTION 260923 #### SECTION 261200 - MEDIUM-VOLTAGE TRANSFORMERS #### PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. ## 1.2 SUMMARY - A. This Section includes the following types of transformers with medium-voltage primaries: - Pad-mounted, liquid-filled transformers. #### 1.3 DEFINITIONS A. NETA ATS: Acceptance Testing Specification. #### 1.4 SUBMITTALS - A. Product Data: Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, location of each field connection, and performance for each type and size of transformer indicated. - B. Manufacturer Seismic Qualification Certification: Submit certification that transformer assembly and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems" Include the following: - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event." - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements. - C. Qualification Data: For testing agency. - D. Source quality-control test reports. - E. Field quality-control test reports. - F. Follow-up service reports. - G. Operation and Maintenance Data: For transformer and accessories to include in emergency, operation, and maintenance manuals. ## 1.5 QUALITY ASSURANCE - A. Testing Agency Qualifications: An independent testing agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction. - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3. - B. Product Options: Drawings indicate size, profiles, and dimensional requirements of transformers and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements." - C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. - D. Comply with IEEE C2. - E. Comply with ANSI C57.12.10, ANSI C57.12.28, IEEE C57.12.70, and IEEE C57.12.80. - F. Comply with NFPA 70. # 1.6 DELIVERY, STORAGE, AND HANDLING A. Store transformers protected from weather and so condensation will not form on or in units. Provide temporary heating according to manufacturer's written instructions. ## 1.7 PROJECT CONDITIONS - A. Service Conditions: IEEE C37.121, usual service conditions except for the following: - 1. Exposure to significant solar radiation. - 2. Altitudes above 4600 feet (1402 m). - 3. Ambient temperatures from -20-degrees F to 110-degrees F. #### 1.8 COORDINATION A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03. ## PART 2 - PRODUCTS #### 2.1 MANUFACTURERS A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - B. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Cooper Industries; Cooper Power Systems Division. - 2. Cutler-Hammer. - 3. Federal Pacific Transformer Company; Division of Electro-Mechanical Corp. - 4. GE Electrical Distribution & Control. - 5. Siemens Energy & Automation, Inc. - 6. Uptegraff, R. E. Mfg. Co. - 7. Virginia Transformer Corp. ## 2.2 PAD-MOUNTED, LIQUID-FILLED TRANSFORMERS - A. Description: ANSI C57.12.13, IEEE C57.12.00, pad-mounted, 2-winding transformers. - B. Insulating Liquid: Less flammable, edible-seed-oil based, and UL listed as complying with NFPA 70 requirements for fire point of not less than 300 deg C when tested according to ASTM D 92. Liquid shall be biodegradable and nontoxic. - C. Insulation Temperature Rise: 55 deg C when operated at rated kVA output in a 40 deg C ambient temperature. Transformer shall be rated to operate at rated kilovolt ampere in an average ambient temperature of 30 deg C over 24 hours with a maximum ambient temperature of 40 deg C without loss of service life expectancy. - D. Windings: copper. - E. Basic Impulse Level: 95 kV. - F. Full-Capacity Voltage Taps: Four 2.5 percent taps, 2 above and 2 below rated high voltage; with externally operable tap changer for de-energized use and with position indicator and padlock pin feature. - G. High-Voltage Switch: 200 A, make-and-latch rating of 10-kA RMS, symmetrical, arranged for loop feed with 3-phase, 4-position, gang-operated, load-break switch that is oil immersed in transformer tank with hook-stick operating handle in primary compartment. - H. Primary Fuses: 150-kV fuse assembly with fuses complying with IEEE C37.47. - 1. Bay-O-Net liquid-immersed fuses in series with liquid-immersed current-limiting fuses. Bay-O-Net fuses shall be externally replaceable without opening transformer tank. - I. Surge Arresters: Distribution class, one for each primary phase; complying with IEEE C62.11 and NEMA LA 1; support from tank wall within high-voltage compartment. Transformers shall have three arresters for loop-feed circuits. - J. High-Voltage Terminations and Equipment: Dead front with externally clamped porcelain bushings and cable connectors suitable for terminating primary cable. - K. Accessories: - 1. Drain Valve: 1 inch (25 mm), with sampling device. - 2. Dial-type thermometer. - Liquid-level gage. - 4. Pressure-vacuum gage. - 5. Pressure Relief Device: Self-sealing with an indicator. - 6. Mounting provisions for low-voltage current transformers. - 7. Mounting provisions for low-voltage potential transformers. #### 2.3 IDENTIFICATION DEVICES A. Nameplates: Engraved, laminated-plastic or metal nameplate for each transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Division 26 Section "Identification for Electrical Systems." #### 2.4 SOURCE QUALITY CONTROL - A. Factory Tests: Perform design and routine tests according to standards specified for components.
Conduct transformer tests according to IEEE C57.12.90. - B. Factory Tests: Perform the following factory-certified tests on each transformer: - 1. Resistance measurements of all windings on rated-voltage connection and on tap extreme connections. - 2. Ratios on rated-voltage connection and on tap extreme connections. - 3. Polarity and phase relation on rated-voltage connection. - 4. No-load loss at rated voltage on rated-voltage connection. - 5. Excitation current at rated voltage on rated-voltage connection. - 6. Impedance and load loss at rated current on rated-voltage connection and on tap extreme connections. - 7. Applied potential. - 8. Induced potential. - 9. Temperature Test: If transformer is supplied with auxiliary cooling equipment to provide more than one rating, test at lowest kilovolt-ampere Class OA or Class AA rating and highest kilovolt-ampere Class OA/FA or Class AA/FA rating. - a. Temperature test is not required if record of temperature test on an essentially duplicate unit is available. #### PART 3 - EXECUTION ### 3.1 EXAMINATION - A. Examine areas and conditions for compliance with requirements for medium-voltage transformers. - B. Examine roughing-in of conduits and grounding systems to verify the following: - 1. Wiring entries comply with layout requirements. - 2. Entries are within conduit-entry tolerances specified by manufacturer and no feeders will have to cross section barriers to reach load or line lugs. - C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed. - D. Verify that ground connections are in place and that requirements in Division 26 Section "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer. - E. Proceed with installation only after unsatisfactory conditions have been corrected. ## 3.2 INSTALLATION - A. Install transformers on concrete bases. - 1. Upgrade and modify the transformer pad to meet the following requirement or provide documentation that the existing transformer pad meets the following requirements: - Anchor transformers to concrete bases according to manufacturer's written instructions, seismic codes at Project, and requirements in Division 26 Section "Hangers and Supports for Electrical Systems." - b. Construct concrete bases of dimensions indicated, but not less than 4 inches (100 mm) larger in both directions than supported unit and 4 inches (100 mm) high. - c. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section "Cast-in-Place Concrete." - Install dowel rods to connect concrete bases to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around full perimeter of hase - e. Install epoxy-coated anchor bolts, for supported equipment, that extend through concrete base and anchor into structural concrete floor. - f. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded. - g. Tack-weld or bolt transformers to channel-iron sills embedded in concrete bases. Install sills level and grout flush with floor or base. - B. Maintain minimum clearances and workspace at equipment according to manufacturer's written instructions and NFPA 70. #### 3.3 IDENTIFICATION A. Identify field-installed wiring and components and provide warning signs as specified in Division 26 Section "Identification for Electrical Systems." ## 3.4 CONNECTIONS - A. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems." - B. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables." #### 3.5 FIELD QUALITY CONTROL - A. Testing Agency: Engage a qualified testing and inspecting agency to perform the following field tests and inspections and prepare test reports: - B. Perform the following field tests and inspections and prepare test reports: - 1. After installing transformers but before primary is energized, verify that grounding system at substation is tested at specified value or less. - 2. After installing transformers and after electrical circuitry has been energized, test for compliance with requirements. - 3. Perform visual and mechanical inspection and electrical test stated in NETA ATS. Certify compliance with test parameters. - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment. - C. Remove and replace malfunctioning units and retest as specified above. - D. Test Reports: Prepare written reports to record the following: - 1. Test procedures used. - 2. Test results that comply with requirements. - 3. Test results that do not comply with requirements and corrective actions taken to achieve compliance with requirements. #### 3.6 FOLLOW-UP SERVICE - A. Voltage Monitoring and Adjusting: If requested by Owner, perform the following voltage monitoring after Substantial Completion but not more than six months after Final Acceptance: - During a period of normal load cycles as evaluated by Owner, perform seven days of three-phase voltage recording at secondary terminals of each transformer. Use voltmeters with calibration traceable to National Institute of Science and Technology standards and with a chart speed of not less than 1 inch (25 mm) per hour. Voltage unbalance greater than 1 percent between phases, or deviation of any phase voltage from nominal value by more than plus or minus 5 percent during test period, is unacceptable. - 2. Corrective Actions: If test results are unacceptable, perform the following corrective actions, as appropriate: - a. Adjust transformer taps. - b. Prepare written request for voltage adjustment by electric utility. - 3. Retests: After corrective actions have been performed, repeat monitoring until satisfactory results are obtained. - 4. Report: Prepare written report covering monitoring and corrective actions performed. **END OF SECTION 261200** #### SECTION 262416 - PANELBOARDS ## PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following: - 1. Distribution panelboards. - 2. Lighting and appliance branch-circuit panelboards. ### 1.3 DEFINITION - A. EMI: Electromagnetic interference. - B. GFCI: Ground-fault circuit interrupter. - C. RFI: Radio-frequency interference. - D. RMS: Root mean square. - E. SPDT: Single pole, double throw. # 1.4 SUBMITTALS - A. Product Data: For each type of panelboard, overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes. - B. Shop Drawings: For each panelboard and related equipment. - 1. Dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings. Include the following: - a. Enclosure types and details for types other than NEMA 250, Type 1. - b. Bus configuration, current, and voltage ratings. - c. Short-circuit current rating of panelboards and overcurrent protective devices. - d. UL listing for series rating of installed devices. - e. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components. - 2. Wiring Diagrams: Power, signal, and control wiring. - C. Qualification Data: For testing agency. - D. Field quality-control test reports including the following: - 1. Test procedures used. - 2. Test results that comply with requirements. - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements. - E. Panelboard Schedules: For installation in panelboards. - F. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following: - 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices. - 2. Time-current curves, including selectable ranges for each type of overcurrent protective device. # 1.5 QUALITY ASSURANCE - A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction. - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3. - B. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories through one source from a single manufacturer. - C. Product Options: Drawings indicate size, profiles, and dimensional requirements of panelboards and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements." - D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. - E. Comply with NEMA PB 1. - F. Comply with NFPA 70. ## 1.6 PROJECT CONDITIONS - A. Environmental Limitations: Rate equipment for continuous operation under the following conditions, unless otherwise indicated: - Ambient Temperature: Not exceeding 110 deg F (44 deg C). - 2. Altitude: Not exceeding 4600 feet (1402 m). - B. Service Conditions:
NEMA PB 1, usual service conditions, as follows: - 1. Ambient temperatures within limits specified. - 2. Altitude not exceeding 4600 feet (1402 m). - C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated: - 1. Notify Construction Manager no fewer than two days in advance of proposed interruption of electrical service. - 2. Do not proceed with interruption of electrical service without Construction Manager's written permission. #### 1.7 COORDINATION - A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, and encumbrances to workspace clearance requirements. - B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03. ## 1.8 EXTRA MATERIALS - A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents. - 1. Keys: Six spares for each type of panelboard cabinet lock. ## PART 2 - PRODUCTS ## 2.1 MANUFACTURERS A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Panelboards, Overcurrent Protective Devices, Controllers, Contactors, and Accessories: - a. Eaton Corporation; Cutler-Hammer Products. - b. General Electric Co.; Electrical Distribution & Protection Div. - c. Siemens Energy & Automation, Inc. - d. Square D. ### 2.2 MANUFACTURED UNITS - A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." - B. Enclosures: Flush- and surface-mounted cabinets. NEMA PB 1, Type 1. - 1. Rated for environmental conditions at installed location. - a. Outdoor Locations: NEMA 250, Type 3R. - b. Other Wet or Damp Indoor Locations: NEMA 250, Type 4. - c. Hazardous Areas Indicated on Drawings: NEMA 250, Type 7C. - 2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. - 3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. - 4. Finish: Manufacturer's standard enamel finish over corrosion-resistant treatment or primer coat. - 5. Directory Card: With transparent protective cover, mounted in metal frame, inside panelboard door. ### C. Phase and Ground Buses: - 1. Material: Hard-drawn copper, 98 percent conductivity. - 2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment ground conductors: bonded to box. - D. Conductor Connectors: Suitable for use with conductor material. - 1. Main and Neutral Lugs: Mechanical type. - 2. Ground Lugs and Bus Configured Terminators: Compression type. - 3. Feed-Through Lugs: Mechanical type suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device. - E. Service Equipment Label: UL labeled for use as service equipment for panelboards with main service disconnect switches. ## 2.3 PANELBOARD SHORT-CIRCUIT RATING - A. UL label indicating series-connected rating with integral or remote upstream overcurrent protective devices. Include size and type of upstream device allowable, branch devices allowable, and UL series-connected short-circuit rating. - B. Fully rated to interrupt symmetrical short-circuit current available at terminals. ## 2.4 DISTRIBUTION PANELBOARDS - A. Doors: Secured with vault-type latch with tumbler lock; keyed alike. Omit for fused-switch panelboards. - B. Main Overcurrent Protective Devices: Solid state electronic circuit breaker. - C. Branch Overcurrent Protective Devices: - 1. For Circuit-Breaker Frame Sizes 125 A and Smaller: Bolt-on circuit breakers. - 2. For Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers; plug-in circuit breakers where individual positive-locking device requires mechanical release for removal. - 3. Fused switches. ## 2.5 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS - A. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units. - B. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike. ### 2.6 OVERCURRENT PROTECTIVE DEVICES - A. Molded-Case Circuit Breaker: UL 489, with interrupting capacity to meet available fault currents. - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger. - 2. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings: - a. Instantaneous trip. - b. Long- and short-time pickup levels. - c. Long- and short-time time adjustments. - d. Ground-fault pickup level, time delay, and l²t response. - B. Molded-Case Circuit-Breaker Features and Accessories: Standard frame sizes, trip ratings, and number of poles. - 1. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials. - 2. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HACR for heating, air-conditioning, and refrigerating equipment. ## 2.7 PANELBOARD SUPPRESSORS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Current Technology; a subsidiary of Danahar Corporation. - 2. Eaton Electrical Inc.; Cutler-Hammer Business Unit. - 3. General Electric Company; GE Consumer & Industrial Electrical Distribution. - 4. Liebert Corporation. - 5. Siemens Energy & Automation, Inc. - 6. Square D; a brand of Schneider Electric. - B. Surge Protection Device: IEEE C62.41-compliant, integrally mounted, solid-state, parallel-connected, non-modular type, with sine-wave tracking suppression and filtering modules, UL 1449, second edition, short-circuit current rating matching or exceeding the panelboard short-circuit rating, and with the following features and accessories: - 1. Accessories: - a. LED indicator lights for power and protection status. - b. Audible alarm, with silencing switch, to indicate when protection has failed. - c. One set of dry contacts rated at 5 A and 250-V ac, for remote monitoring of protection status. - C. Surge Protection Device: IEEE C62.41-compliant, integrally mounted, bolt-on, solid-state, parallel-connected, modular (with field-replaceable modules) type, with sine-wave tracking suppression and filtering modules, UL 1449, second edition, short-circuit current rating matching or exceeding the panelboard short-circuit rating, and with the following features and accessories: - 1. Accessories: - a. Fuses rated at 200-kA interrupting capacity. - b. Fabrication using bolted compression lugs for internal wiring. - c. Integral disconnect switch. - d. Redundant suppression circuits. - e. Redundant replaceable modules. - f. Arrangement with wire connections to phase buses, neutral bus, and ground bus. - g. LED indicator lights for power and protection status. - h. Audible alarm, with silencing switch, to indicate when protection has failed. - Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of system operation. Contacts shall reverse position on failure of any surge diversion module or on opening of - any current-limiting device. Coordinate with building power monitoring and control system. - j. Six-digit, transient-event counter set to totalize transient surges. - 2. Peak Single-Impulse Surge Current Rating: 120 kA per mode/240 kA per phase. - 3. Minimum single-impulse current ratings, using 8-by-20-mic.sec. waveform described in IEEE C62.41.2. - a. Line to Neutral: 70.000 A. - b. Line to Ground: 70,000 A. - c. Neutral to Ground: 50,000 A. - 4. Protection modes and UL 1449 SVR for grounded wye circuits with 208Y/120-V, three-phase, four-wire circuits shall be as follows: - a. Line to Neutral: 400 V for 208Y/120. - b. Line to Ground: 400 V for 208Y/120. - c. Neutral to Ground: 400 V for 208Y/120. #### 2.8 ACCESSORY COMPONENTS AND FEATURES - A. Furnish accessory set including tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation. - B. Furnish portable test set to test functions of solid-state trip devices without removal from panelboard. ## PART 3 - EXECUTION ## 3.1 INSTALLATION - A. Install panelboards and accessories according to NEMA PB 1.1. - B. Mount top of trim 74 inches (1880 mm) above finished floor, unless otherwise indicated. - C. Mount plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish. - D. Install overcurrent protective devices and controllers. - 1. Set field-adjustable switches and circuit-breaker trip ranges. - E. Install filler plates in unused spaces. - F. Stub four 1-inch (27-GRC) empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch (27-GRC) empty conduits into raised floor space or below slab not on grade. - G. Arrange conductors in gutters into groups and bundle and wrap with wire ties. ## 3.2 IDENTIFICATION - A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 26 Section "Identification for Electrical Systems." - B. Create a directory to indicate installed circuit loads. Obtain approval before installing. Use a computer or typewriter to create
directory; handwritten directories are not acceptable. - C. Panelboard Nameplates: Label each panelboard with engraved metal or laminated-plastic nameplate mounted with corrosion-resistant screws. #### 3.3 CONNECTIONS - A. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems." - B. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables." #### 3.4 FIELD QUALITY CONTROL - A. Prepare for acceptance tests as follows: - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit. - 2. Test continuity of each circuit. - B. Perform the following field tests and inspections and prepare test reports: - 1. Perform each electrical test and visual and mechanical inspection stated in NETA ATS, Section 7.5 for switches and Section 7.6 for molded-case circuit breakers. Certify compliance with test parameters. - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest. ## 3.5 CLEANING A. On completion of installation, inspect interior and exterior of panelboards. Remove paint splatters and other spots. Vacuum dirt and debris; do not use compressed air to assist in cleaning. Repair exposed surfaces to match original finish. # **END OF SECTION 262416** ### SECTION 262726 - WIRING DEVICES ## PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following: - 1. Receptacles, receptacles with integral GFCI, and associated device plates. - 2. Twist-locking receptacles. - 3. Snap switches. - 4. Cord and plug sets. ## 1.3 DEFINITIONS - A. EMI: Electromagnetic interference. - B. GFCI: Ground-fault circuit interrupter. - C. Pigtail: Short lead used to connect a device to a branch-circuit conductor. - D. RFI: Radio-frequency interference. - E. UTP: Unshielded twisted pair. # 1.4 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Field quality-control test reports. #### 1.5 QUALITY ASSURANCE A. Source Limitations: Obtain each type of wiring device and associated wall plate through one source from a single manufacturer. Insofar as they are available, obtain all wiring devices and associated wall plates from a single manufacturer and one source. - B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. - C. Comply with NFPA 70. ## 1.6 COORDINATION - A. Receptacles for Owner-Furnished Equipment: Match plug configurations. - 1. Cord and Plug Sets: Match equipment requirements. # PART 2 - PRODUCTS ### 2.1 MANUFACTURERS - A. Manufacturers' Names: Shortened versions (shown in parentheses) of the following manufacturers' names are used in other Part 2 articles: - 1. Cooper Wiring Devices; a division of Cooper Industries, Inc. (Cooper). - 2. Hubbell Incorporated; Wiring Device-Kellems (Hubbell). - 3. Leviton Mfg. Company Inc. (Leviton). - 4. Pass & Seymour/Legrand; Wiring Devices & Accessories (Pass & Seymour). ## 2.2 STRAIGHT BLADE RECEPTACLES - A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498. - 1. Products: Subject to compliance with requirements, provide one of the following: - a. Cooper; 5351 (single), 5352 (duplex). - b. Hubbell; HBL5351 (single), CR5352 (duplex). - c. Leviton; 5891 (single), 5352 (duplex). - d. Pass & Seymour; 5381 (single), 5352 (duplex). ## 2.3 GFCI RECEPTACLES - A. General Description: Straight blade, feed-through type. Comply with NEMA WD 1, NEMA WD 6, UL 498, and UL 943, Class A, and include indicator light that is lighted when device is tripped. - B. Duplex GFCI Convenience Receptacles, 125 V, 20 A: - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following: - 2. Products: Subject to compliance with requirements, provide one of the following: - a. Cooper; GF20. - b. Pass & Seymour; 2084. ## 2.4 TWIST-LOCKING RECEPTACLES - A. Single Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration L5-20R, and UL 498. - Products: Subject to compliance with requirements, provide one of the following—with NEMA configuration as indicated on the drawings: - a. Cooper; - b. Hubbell: . - c. Leviton: . - d. Pass & Seymour. ## 2.5 CORD AND PLUG SETS - A. Description: Match voltage and current ratings and number of conductors to requirements of equipment being connected. - 1. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and equipment-rating ampacity plus a minimum of 30 percent. - 2. Plug: Nylon body and integral cable-clamping jaws. Match cord and receptacle type for connection. #### 2.6 SNAP SWITCHES - A. Comply with NEMA WD 1 and UL 20. - B. Switches, 120/277 V, 20 A: - 1. Products: Subject to compliance with requirements, provide one of the following: - a. Cooper; 2221 (single pole), 2222 (two pole), 2223 (three way), 2224 (four way). - b. Hubbell; CS1221 (single pole), CS1222 (two pole), CS1223 (three way), CS1224 (four way). - c. Leviton; 1221-2 (single pole), 1222-2 (two pole), 1223-2 (three way), 1224-2 (four way). - d. Pass & Seymour; 20AC1 (single pole), 20AC2 (two pole), 20AC3 (three way), 20AC4 (four way). - C. Pilot Light Switches, 20 A: - 1. Products: Subject to compliance with requirements, provide one of the following: - a. Cooper; 2221PL for 120 V and 277 V. - b. Hubbell: HPL1221PL for 120 V and 277 V. - Leviton: 1221-PLR for 120 V. 1221-7PLR for 277 V. - d. Pass & Seymour; PS20AC1-PLR for 120 V. - 2. Description: Single pole, with neon-lighted handle, illuminated when switch is "ON." ## 2.7 WALL PLATES - A. Single and combination types to match corresponding wiring devices. - 1. Plate-Securing Screws: Metal with head color to match plate finish. - 2. Material for Finished Spaces: Smooth, high-impact thermoplastic. - B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with type 3R weather-resistant, die-cast aluminum with lockable cover. #### 2.8 FINISHES - A. Color: Wiring device catalog numbers in Section Text do not designate device color. - 1. Wiring Devices Connected to Normal Power System: As selected by Architect, unless otherwise indicated or required by NFPA 70 or device listing. #### PART 3 - EXECUTION ### 3.1 INSTALLATION - A. Comply with NECA 1, including the mounting heights listed in that standard, unless otherwise noted. - B. Coordination with Other Trades: - 1. Take steps to insure that devices and their boxes are protected. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of the boxes. - 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables. - 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall. - 4. Install wiring devices after all wall preparation, including painting, is complete. ### C. Conductors: 1. Do not strip insulation from conductors until just before they are spliced or terminated on devices. - 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire. - 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails. - 4. Existing Conductors: - a. Cut back and pigtail, or replace all damaged conductors. - b. Straighten conductors that remain and remove corrosion and foreign matter. - c. Pigtailing existing conductors is permitted provided the outlet box is large enough. ## D. Device Installation: - 1. Replace all devices that have been in temporary use during construction or that show signs that they were installed before building finishing operations were complete. - 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors. - 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment. - 4. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm) in length. - 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, 2/3 to 3/4 of the way around terminal screw. - 6. Use a torque screwdriver when a torque is recommended or required by the manufacturer. - 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections. - 8. Tighten unused terminal screws on the device. - 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device mounting screws in yokes, allowing metal-to-metal contact. # E. Receptacle Orientation: - 1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the left. - 2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top. - F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening. - G. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates. - H. Adjust locations of floor service outlets and service
poles to suit arrangement of partitions and furnishings. ## 3.2 IDENTIFICATION - A. Comply with Division 26 Section "Identification for Electrical Systems." - 1. Receptacles: Identify panelboard and circuit number from which served. Use hot, stamped or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes. ## 3.3 FIELD QUALITY CONTROL - A. Perform tests and inspections and prepare test reports. - 1. In healthcare facilities, prepare reports that comply with recommendations in NFPA 99. - 2. Test Instruments: Use instruments that comply with UL 1436. - 3. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated LED indicators of measurement. - B. Tests for Convenience Receptacles: - 1. Line Voltage: Acceptable range is 105 to 132 V. - 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is not acceptable. - 3. Ground Impedance: Values of up to 2 ohms are acceptable. - 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943. - 5. Using the test plug, verify that the device and its outlet box are securely mounted. - 6. The tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above. **END OF SECTION 262726** #### SECTION 262913 - ENCLOSED CONTROLLERS ## PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes ac, enclosed controllers rated 600 V and less, of the following types: - 1. Across-the-line, manual and magnetic controllers. - 2. Reduced-voltage controllers. - 3. Multispeed controllers. - 4. Variable frequency controllers for small motor applications. - B. Related Sections include the following: - 1. Division 26 Section "Electrical Power Monitoring and Control" for interfacing communication and metering requirements. - 2. Division 26 Section "Variable-Frequency Motor Controllers" for general-purpose, ac, adjustable-frequency, pulse-width-modulated controllers for use on constant torque loads in ranges up to 200 hp. - 3. Division 26 Section "Transient-Voltage Suppression for Low-Voltage Electrical Power Circuits" for low-voltage power, control, and communication surge suppressors. #### 1.3 SUBMITTALS - A. Product Data: For each type of enclosed controller. Include dimensions and manufacturer's technical data on features, performance, electrical characteristics, ratings, and finishes. - B. Shop Drawings: For each enclosed controller. - 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following: - a. Each installed unit's type and details. - b. Nameplate legends. - c. Short-circuit current rating of integrated unit. - d. Listed and labeled for series rating of overcurrent protective devices in combination controllers by an NRTL acceptable to authorities having jurisdiction. - e. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices in combination controllers. - 2. Wiring Diagrams: Power, signal, and control wiring. - C. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout, required working clearances, and required area above and around enclosed controllers where pipe and ducts are prohibited. Show enclosed controller layout and relationships between electrical components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate field measurements. - D. Manufacturer Seismic Qualification Certification: Submit certification that enclosed controllers, accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems" Include the following: - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified." - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements. - E. Qualification Data: For manufacturer. - F. Field quality-control test reports. - G. Operation and Maintenance Data: For enclosed controllers to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following: - 1. Routine maintenance requirements for enclosed controllers and all installed components. - 2. Manufacturer's written instructions for testing and adjusting overcurrent protective devices. - H. Load-Current and Overload-Relay Heater List: Compile after motors have been installed and arrange to demonstrate that selection of heaters suits actual motor nameplate full-load currents. I. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed and arrange to demonstrate that dip switch settings for motor running overload protection suit actual motor to be protected. #### 1.4 QUALITY ASSURANCE - A. Manufacturer Qualifications: A qualified manufacturer. Maintain, within 100 miles (160 km) of Project site, a service center capable of providing training, parts, and emergency maintenance and repairs. - B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction. - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3. - C. Source Limitations: Obtain enclosed controllers of a single type through one source from a single manufacturer. - D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. - E. Comply with NFPA 70. - F. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed controllers, minimum clearances between enclosed controllers, and for adjacent surfaces and other items. Comply with indicated maximum dimensions and clearances. # 1.5 DELIVERY, STORAGE, AND HANDLING - A. Store enclosed controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect enclosed controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage. - B. If stored in areas subject to weather, cover enclosed controllers to protect them from weather, dirt, dust, corrosive substances, and physical damage. Remove loose packing and flammable materials from inside controllers; install electric heating of sufficient wattage to prevent condensation. #### 1.6 PROJECT CONDITIONS A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated: - 1. Notify Architect no fewer than two days in advance of proposed interruption of electrical service. - 2. Indicate method of providing temporary utilities. - 3. Do not proceed with interruption of electrical service without Architect's written permission. #### 1.7 COORDINATION - A. Coordinate layout and installation of enclosed controllers with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels. - B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03 Section "Cast-in-Place Concrete." - C. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories." - D. Coordinate features of enclosed controllers and accessory devices with pilot devices and control circuits to which they connect. - E. Coordinate features, accessories, and functions of each enclosed controller with ratings and characteristics of supply circuit, motor, required control sequence, and duty cycle of motor and load. #### 1.8 EXTRA MATERIALS - A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents. - 1. Spare Fuses: Furnish one spare for every five installed, but no fewer than one set of three of each type and rating. - 2. Indicating Lights: Two of each type installed. #### PART 2 - PRODUCTS ## 2.1 MANUFACTURERS A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - B. Manufacturers: Subject to compliance with requirements, provide products by one
of the following: - 1. ABB Power Distribution, Inc.; ABB Control, Inc. Subsidiary. - 2. Danfoss Inc.; Danfoss Electronic Drives Div. - 3. Eaton Corporation; Cutler-Hammer Products. - 4. General Electrical Company; GE Industrial Systems. - 5. Rockwell Automation: Allen-Bradlev Co.: Industrial Control Group. - 6. Siemens/Furnas Controls. - 7. Square D. ## 2.2 ACROSS-THE-LINE ENCLOSED CONTROLLERS - A. Manual Controller: NEMA ICS 2, general purpose, Class A, with "quick-make, quick-break" toggle or pushbutton action, and marked to show whether unit is "OFF," "ON," or "TRIPPED." - Overload Relay: Ambient-compensated type with inverse-time-current characteristics and NEMA ICS 2, Class 10 tripping characteristics. Relays shall have heaters and sensors in each phase, matched to nameplate, full-load current of specific motor to which they connect and shall have appropriate adjustment for duty cycle. - B. Magnetic Controller: NEMA ICS 2, Class A, full voltage, nonreversing, across the line, unless otherwise indicated. - 1. Control Circuit: 120 V; obtained from integral control power transformer with a control power transformer of sufficient capacity to operate connected pilot, indicating and control devices, plus 100 percent spare capacity. - 2. Overload Relay: Ambient-compensated type with inverse-time-current characteristic and NEMA ICS 2, Class 20 tripping characteristic. Provide with heaters or sensors in each phase matched to nameplate full-load current of specific motor to which they connect and with appropriate adjustment for duty cycle. - Adjustable Overload Relay: Dip switch selectable for motor running overload protection with NEMA ICS 2, Class 20 tripping characteristic, and selected to protect motor against voltage and current unbalance and single phasing. Provide relay with Class II ground-fault protection, with start and run delays to prevent nuisance trip on starting. - C. Combination Magnetic Controller: Factory-assembled combination controller and disconnect switch. - 1. Fusible Disconnecting Means: NEMA KS 1, heavy-duty, fusible switch with rejection-type fuse clips rated for fuses. Select and size fuses to provide Type 2 protection according to IEC 947-4-1, as certified by an NRTL. ## 2.3 ENCLOSURES - A. Description: Flush- or surface-mounting cabinets as indicated. NEMA 250, Type 1, unless otherwise indicated to comply with environmental conditions at installed location. - 1. Outdoor Locations: NEMA 250, Type 3R. - 2. Other Wet or Damp Indoor Locations: NEMA 250, Type 4. - 3. Hazardous Areas Indicated on Drawings: NEMA 250, Type 7C. # 2.4 ACCESSORIES - A. Devices shall be factory installed in controller enclosure, unless otherwise indicated. - B. Push-Button Stations, Pilot Lights, and Selector Switches: NEMA ICS 2, heavy-duty type. - C. Stop and Lockout Push-Button Station: Momentary-break, push-button station with a factory-applied hasp arranged so padlock can be used to lock push button in depressed position with control circuit open. - D. Control Relays: Auxiliary and adjustable time-delay relays. - E. Phase-Failure and Undervoltage Relays: Solid-state sensing circuit with isolated output contacts for hard-wired connection. Provide adjustable undervoltage setting. - F. Current-Sensing, Phase-Failure Relays for Bypass Controllers: Solid-state sensing circuit with isolated output contacts for hard-wired connection; arranged to operate on phase failure, phase reversal, current unbalance of from 30 to 40 percent, or loss of supply voltage; with adjustable response delay. ## 2.5 FACTORY FINISHES A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested enclosed controllers before shipping. ## PART 3 - EXECUTION # 3.1 EXAMINATION - A. Examine areas and surfaces to receive enclosed controllers for compliance with requirements, installation tolerances, and other conditions affecting performance. - 1. Proceed with installation only after unsatisfactory conditions have been corrected. ## 3.2 APPLICATIONS - A. Select features of each enclosed controller to coordinate with ratings and characteristics of supply circuit and motor; required control sequence; duty cycle of motor, controller, and load; and configuration of pilot device and control circuit affecting controller functions. - B. Select horsepower rating of controllers to suit motor controlled. ### 3.3 INSTALLATION - A. For control equipment at walls, bolt units to wall or mount on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Division 26 Section "Hangers and Supports for Electrical Systems." - B. Install freestanding equipment on concrete bases. - C. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." - D. Enclosed Controller Fuses: Install fuses in each fusible switch. Comply with requirements in Division 26 Section "Fuses." ### 3.4 CONCRETE BASES - A. Coordinate size and location of concrete bases. Verify structural requirements with structural engineer. - B. Concrete base is specified in Division 26 Section "Hangers and Supports for Electrical Systems," and concrete materials and installation requirements are specified in Division 03. # 3.5 IDENTIFICATION A. Identify enclosed controller, components, and control wiring according to Division 26 Section "Identification for Electrical Systems." #### 3.6 CONTROL WIRING INSTALLATION - A. Install wiring between enclosed controllers according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables." - B. Bundle, train, and support wiring in enclosures. - C. Connect hand-off-automatic switch and other automatic-control devices where applicable. - 1. Connect selector switches to bypass only manual- and automatic-control devices that have no safety functions when switch is in hand position. - 2. Connect selector switches with enclosed controller circuit in both hand and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors. ## 3.7 CONNECTIONS - A. Conduit installation requirements are specified in other Division 26 Sections. Drawings indicate general arrangement of conduit, fittings, and specialties. - B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems." ### 3.8 FIELD QUALITY CONTROL - A. Prepare for acceptance tests as follows: - 1. Test insulation resistance for each enclosed controller element, bus, component, connecting supply, feeder, and control circuit. - 2. Test continuity of each circuit. - B. Manufacturer's Field Service: Engage a factory-authorized service representative to perform the following: - 1. Inspect controllers, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment. - 2. Assist in field testing of equipment. - 3. Report results in writing. - C. Perform the following field tests and inspections and prepare test reports: - 1. Perform each electrical test and visual and mechanical inspection, except optional tests, stated in NETA ATS, "Motor Control Motor Starters." Certify compliance with test parameters. - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest. # 3.9 ADJUSTING A. Set field-adjustable switches and circuit-breaker trip ranges. # 3.10 DEMONSTRATION A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain enclosed controllers. Refer to Division 01 Section "Demonstration and Training." END OF SECTION 262913 ### SECTION 265100 - INTERIOR LIGHTING ## PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following: - 1. Interior lighting fixtures, lamps, and ballasts. - 2. Emergency lighting units. - 3. Exit signs. - 4. Lighting fixture supports. - B. Related Sections include the following: - 1. Division 26 Section "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors. - 2. Division 26 Section "Wiring Devices" for manual wall-box dimmers for incandescent lamps. ## 1.3 DEFINITIONS - A. BF: Ballast factor. - B. CRI: Color-rendering index. - C. CU: Coefficient of utilization. - D. HID: High-intensity discharge. - E. LER: Luminaire efficacy rating. - F. Luminaire: Complete lighting fixture, including ballast housing if provided. - G. RCR: Room cavity ratio. ## 1.4 SUBMITTALS - A. Product Data: For each type of lighting fixture, arranged in order of fixture designation. Include data on features, accessories, finishes, and the following: - 1. Physical description of lighting fixture including dimensions. - 2. Emergency lighting units including battery and charger. - 3. Ballast. - 4. Energy-efficiency data. - 5. Air and Thermal Performance Data: For air-handling lighting fixtures. Furnish data required in "Submittals" Article in Division 23 Section "Diffusers, Registers, and Grilles." - 6. Sound Performance Data: For air-handling lighting fixtures. Indicate sound power level and sound transmission class in test reports certified according to standards specified in Division 23 Section "Diffusers, Registers, and Grilles." - 7. Life, output, and energy-efficiency data for lamps. - 8. Photometric data, in IESNA format, based on laboratory tests of each lighting fixture type, outfitted with lamps, ballasts, and accessories identical to those indicated for the lighting fixture as applied in this Project. - a. For indicated fixtures, photometric data shall be certified by a qualified independent testing agency. Photometric
data for remaining fixtures shall be certified by the manufacturer. - b. Photometric data shall be certified by a manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program (NVLAP) for Energy Efficient Lighting Products. - B. Shop Drawings: Show details of nonstandard or custom lighting fixtures. Indicate dimensions, weights, methods of field assembly, components, features, and accessories. - 1. Wiring Diagrams: Power and control wiring. - C. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved: - 1. Lighting fixtures. - 2. Suspended ceiling components. - 3. Structural members to which suspension systems for lighting fixtures will be attached. - 4. Other items in finished ceiling including the following: - a. Air outlets and inlets. - b. Speakers. - c. Sprinklers. - d. Smoke and fire detectors. - e. Occupancy sensors. - f. Access panels. - 5. Perimeter moldings. - D. Samples for Verification: Interior lighting fixtures designated for sample submission in Interior Lighting Fixture Schedule. Each sample shall include the following: - 1. Lamps: Specified units installed. - 2. Accessories: Cords and plugs. - E. Product Certificates: For each type of ballast for bi-level and dimmer-controlled fixtures, signed by product manufacturer. - F. Qualification Data: For agencies providing photometric data for lighting fixtures. - G. Field quality-control test reports. - H. Operation and Maintenance Data: For lighting equipment and fixtures to include in emergency, operation, and maintenance manuals. - I. Warranties: Special warranties specified in this Section. ## 1.5 QUALITY ASSURANCE - A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers' laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products. - B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7. - C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. - D. Comply with NFPA 70. - E. FMG Compliance: Lighting fixtures for hazardous locations shall be listed and labeled for indicated class and division of hazard by FMG. - F. Mockups: Provide interior lighting fixtures for room or module mockups, complete with power and control connections. - 1. Obtain Architect's approval of fixtures for mockups before starting installations. - 2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work. - 3. Approved fixtures in mockups may become part of the completed Work if undisturbed at time of Substantial Completion. ## 1.6 COORDINATION A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies. # 1.7 WARRANTY - A. Special Warranty for Ballasts: Manufacturer's standard form in which ballast manufacturer agrees to repair or replace ballasts that fail in materials or workmanship within specified warranty period. - 1. Warranty Period for Electronic Ballasts: Five years from date of Substantial Completion. - B. Special Warranty for T5HO and T8 Fluorescent Lamps: Manufacturer's standard form, made out to Owner and signed by lamp manufacturer agreeing to replace lamps that fail in materials or workmanship, f.o.b. the nearest shipping point to Project site, within specified warranty period indicated below. - 1. Warranty Period: One year(s) from date of Substantial Completion. #### 1.8 EXTRA MATERIALS - A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents. - 1. Lamps: 10 for every 100 of each type and rating installed. Furnish at least one of each type. - 2. Plastic Diffusers and Lenses: 1 for every 100 of each type and rating installed. Furnish at least one of each type. - 3. Ballasts: 1 for every 100 of each type and rating installed. Furnish at least one of each type. - 4. Globes and Guards: 1 for every 20 of each type and rating installed. Furnish at least one of each type. #### PART 2 - PRODUCTS ## 2.1 MANUFACTURERS - A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection: - B. In Interior Lighting Fixture Schedule where titles below are column or row headings that introduce lists, the following requirements apply to product selection: - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified. # 2.2 LIGHTING FIXTURES AND COMPONENTS, GENERAL REQUIREMENTS - A. Recessed Fixtures: Comply with NEMA LE 4 for ceiling compatibility for recessed fixtures. - B. Incandescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5A. - C. Fluorescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5 and NEMA LE 5A as applicable. - D. HID Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5B. - E. Metal Parts: Free of burrs and sharp corners and edges. - F. Sheet Metal Components: Steel, unless otherwise indicated. Form and support to prevent warping and sagging. - G. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. - H. Reflecting surfaces shall have minimum reflectance as follows, unless otherwise indicated: - 1. White Surfaces: 85 percent. - 2. Specular Surfaces: 83 percent. - 3. Diffusing Specular Surfaces: 75 percent. - 4. Laminated Silver Metallized Film: 90 percent. - I. Plastic Diffusers, Covers, and Globes: - 1. Acrylic Lighting Diffusers: 100 percent virgin acrylic plastic. High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation. - a. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless different thickness is indicated. - b. UV stabilized. - 2. Glass: Annealed crystal glass, unless otherwise indicated. ## 2.3 BALLASTS FOR LINEAR FLUORESCENT LAMPS - A. Electronic Ballasts: Comply with ANSI C82.11; programmed-start type, unless otherwise indicated, and designed for type and quantity of lamps served. Ballasts shall be designed for full light output unless dimmer or bi-level control is indicated. - 1. Sound Rating: A. - 2. Total Harmonic Distortion Rating: Less than 20 percent. - 3. Transient Voltage Protection: IEEE C62.41, Category A or better. - 4. Operating Frequency: 20 kHz or higher. - 5. Lamp Current Crest Factor: 1.7 or less. - 6. BF: 0.71 for T8. - 7. Power Factor: 0.98 or higher. - 8. Parallel Lamp Circuits: Multiple lamp ballasts shall comply with ANSI C 82.11 and shall be connected to maintain full light output on surviving lamps if one or more lamps fail. - B. Electronic Programmed-Start Ballasts for T5HO Lamps: Comply with ANSI C82.11 and the following: - 1. Lamp end-of-life detection and shutdown circuit for T5 diameter lamps. - 2. Automatic lamp starting after lamp replacement. - 3. Sound Rating: A. - 4. Total Harmonic Distortion Rating: Less than 20 percent. - 5. Transient Voltage Protection: IEEE C62.41, Category A or better. - 6. Operating Frequency: 20 kHz or higher. - 7. Lamp Current Crest Factor: 1.7 or less. - 8. BF: 0.95 or higher, unless otherwise indicated. - 9. Power Factor: 0.98 or higher. - C. Electromagnetic Ballasts: Comply with ANSI C82.1; energy saving, high-power factor, Class P, and having automatic-reset thermal protection. - 1. Ballast Manufacturer Certification: Indicated by label. - D. Single Ballasts for Multiple Lighting Fixtures: Factory-wired with ballast arrangements and bundled extension wiring to suit final installation conditions without modification or rewiring in the field. - E. Ballasts for Low-Temperature Environments: - Temperatures 0 Deg F (Minus 17 Deg C) and Higher: Electronic type rated for 0 deg F (minus 17 deg C) starting and operating temperature with indicated lamp types. - 2. Temperatures Minus 20 Deg F (Minus 29 Deg C) and Higher: Electromagnetic type designed for use with indicated lamp types. - F. Ballasts for Low Electromagnetic-Interference Environments: Comply with 47 CFR, Chapter 1, Part 18, Subpart C, for limitations on electromagnetic and radio-frequency interference for consumer equipment. ## 2.4 BALLASTS FOR COMPACT FLUORESCENT LAMPS - A. Description: Electronic programmed rapid-start type, complying with ANSI C 82.11, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bi-level control is indicated: - 1. Lamp end-of-life detection and shutdown circuit. - 2. Automatic lamp starting after lamp replacement. - 3. Sound Rating: A. - 4. Total Harmonic Distortion Rating: Less than 20 percent. - 5. Transient Voltage Protection: IEEE C62.41, Category A or better. - 6. Operating Frequency: 20 kHz or higher. - 7. Lamp Current Crest Factor: 1.7 or less. - 8. BF: 0.95 or higher, unless otherwise indicated. - 9. Power Factor: 0.98 or higher. - 10. Interference: Comply with 47 CFR, Chapter 1, Part 18, Subpart C, for limitations on electromagnetic and radio-frequency interference for nonconsumer equipment. - 11. Ballast Case Temperature: 75 deg C, maximum. - B. Ballasts
for Dimmer-Controlled Lighting Fixtures: Electronic type. - 1. Dimming Range: 100 to 5 percent of rated lamp lumens. - 2. Ballast Input Watts: Can be reduced to 20 percent of normal. - 3. Compatibility: Certified by manufacturer for use with specific dimming control system and lamp type indicated. ## 2.5 BALLASTS FOR HID LAMPS - A. Electronic Ballast for Metal-Halide Lamps: Include the following features unless otherwise indicated: - 1. Lamp end-of-life detection and shutdown circuit. - 2. Sound Rating: A. - 3. Total Harmonic Distortion Rating: Less than 15 percent. - 4. Transient Voltage Protection: IEEE C62.41, Category A or better. - Lamp Current Crest Factor: 1.5 or less. - 6. Power Factor: .90 or higher. - 7. Interference: Comply with 47 CFR, Chapter 1, Part 18, Subpart C, for limitations on electromagnetic and radio-frequency interference for nonconsumer equipment. - 8. Protection: Class P thermal cutout. - 9. Retain subparagraph and associated subparagraphs below for bi-level ballasts. ## 2.6 EXIT SIGNS - A. Description: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction. - B. Internally Lighted Signs: - 1. Lamps for AC Operation: Fluorescent, 2 for each fixture, 20,000 hours of rated lamp life. - 2. Lamps for AC Operation: LEDs. 70,000 hours minimum rated lamp life. - a. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory- - installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response. - b. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and flashing red LED. ## 3. Master/Remote Sign Configurations: - a. Master Unit: Comply with requirements above for self-powered exit signs, and provide additional capacity in LED power supply for power connection to remote unit. - b. Remote Unit: Comply with requirements above for self-powered exit signs, except omit power supply, battery and test features. Arrange to receive full power requirements from master unit. Connect for testing concurrently with master unit as a unified system. ## 2.7 FLUORESCENT LAMPS - A. Low-Mercury Lamps: Comply with EPA's toxicity characteristic leaching procedure test; shall yield less than 0.2 mg of mercury per liter when tested according to NEMA LL 1. - B. T8 rapid-start low-mercury lamps, rated 32 W maximum, nominal length of 48 inches (1220 mm), 3100 initial lumens (minimum), CRI 75 (minimum), color temperature 3500 K, and average rated life 20,000 hours, unless otherwise indicated. - C. T5HO rapid-start, high-output low-mercury lamps, rated 54 W maximum, nominal length of 45.2 inches (1150 mm), 5000 initial lumens (minimum), CRI 85 (minimum), color temperature 4100 K, and average rated life of 20,000 hours, unless otherwise indicated. - D. Compact Fluorescent Lamps: 4-Pin, low mercury, CRI 80 (minimum), color temperature 3500 K, average rated life of 10,000 hours at 3 hours operation per start, and suitable for use with dimming ballasts, unless otherwise indicated. - 1. 13 W: T4, double or triple tube, rated 900 initial lumens (minimum). - 2. 18 W: T4, double or triple tube, rated 1200 initial lumens (minimum). - 3. 26 W: T4, double or triple tube, rated 1800 initial lumens (minimum). - 4. 32 W: T4, triple tube, rated 2400 initial lumens (minimum). - 5. 42 W: T4, triple tube, rated 3200 initial lumens (minimum). - 6. 55 W: T4, triple tube, rated 4300 initial lumens (minimum). ## 2.8 HID LAMPS A. High-Pressure Sodium Lamps: ANSI C78.42, CRI 21 (minimum), color temperature 1900 K, and average rated life of 24,000 hours, minimum. ## 2.9 LIGHTING FIXTURE SUPPORT COMPONENTS - A. Comply with Division 26 Section "Hangers and Supports for Electrical Systems" for channel- and angle-iron supports and nonmetallic channel and angle supports. - B. Single-Stem Hangers: 1/2-inch (13-mm) steel tubing with swivel ball fittings and ceiling canopy. Finish same as fixture. - C. Twin-Stem Hangers: Two, 1/2-inch (13-mm) steel tubes with single canopy designed to mount a single fixture. Finish same as fixture. - D. Wires: ASTM A 641/A 641M, Class 3, soft temper, zinc-coated steel, 12 gage (2.68 mm). - E. Wires for Humid Spaces: ASTM A 580/A 580M, Composition 302 or 304, annealed stainless steel, 12 gage (2.68 mm). - F. Rod Hangers: 3/16-inch (5-mm) minimum diameter, cadmium-plated, threaded steel rod. - G. Hook Hangers: Integrated assembly matched to fixture and line voltage and equipped with threaded attachment, cord, and locking-type plug. ## PART 3 - EXECUTION ## 3.1 INSTALLATION - A. Lighting fixtures: Set level, plumb, and square with ceilings and walls. Install lamps in each fixture. - B. Support for Lighting Fixtures in or on Grid-Type Suspended Ceilings: Use grid as a support element. - 1. Install a minimum of four ceiling support system rods or wires for each fixture. Locate not more than 6 inches (150 mm) from lighting fixture corners. - 2. Support Clips: Fasten to lighting fixtures and to ceiling grid members at or near each fixture corner with clips that are UL listed for the application. - 3. Fixtures of Sizes Less Than Ceiling Grid: Install as indicated on reflected ceiling plans or center in acoustical panel, and support fixtures independently with at least two 3/4-inch (20-mm) metal channels spanning and secured to ceiling tees. - 4. Install at least one independent support rod or wire from structure to a tab on lighting fixture. Wire or rod shall have breaking strength of the weight of fixture at a safety factor of 3. ## C. Suspended Lighting Fixture Support: - 1. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging. - 2. Stem-Mounted, Single-Unit Fixtures: Suspend with twin-stem hangers. - 3. Continuous Rows: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of fixture chassis, including one at each end. - D. Adjust aimable lighting fixtures to provide required light intensities. - E. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables." ## 3.2 FIELD QUALITY CONTROL - A. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery and retransfer to normal. - B. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards. **END OF SECTION 265100** REPORT GEOTECHNICAL STUDY TWO-BAY ADDITION TO OMS VEHICLE MAINTENANCE SHOP WEST SIDE OF AIRPORT ROAD AT APPROXIMATELY 7600 SOUTH AIRPORT NO. 2, WEST JORDAN, UTAH STATE OF UTAH PROJECT: 61016-08031480 ## Submitted To: State of Utah Division of Facilities Construction and Management 4110 State Office Building Salt Lake City, Utah 84114 Submitted By: Gordon Spilker Huber Geotechnical Consultants, Inc. 4426 South Century Drive, Suite 100 Salt Lake City, Utah 84123 May 6, 2008 Job No. 0128-021-08 May 6, 2008 Job No. 0128-022-08 State of Utah - DFCM 4110 State Office Building Salt Lake City, Utah 84114 Attention: Mr. Wayne Smith Gentlemen: Re: Report Geotechnical Study Two-Bay Addition to OMS, Vehicle Maintenance Shop West Side of Airport Road at Approximately 7600 South Airport No. 2, West Jordan, Utah State of Utah Project: 61016-08031480 ## 1. INTRODUCTION ## 1.1 GENERAL This report presents the results of our geotechnical study performed for the proposed two-bay addition to OMS, Vehicle Maintenance Shop, located on the west side of Airport Road at approximately 7600 South, Airport No. 2, in West Jordan, Utah. The general location of the site with respect to major topographic features and existing facilities, as of 1999, is presented on Figure 1, Vicinity Map. A more detailed layout of the site showing the proposed addition with respect to existing facilities is presented on an aerial photograph base map, as Figure 2, Site Plan. The locations of the borings drilled in conjunction with this study are also presented on Figure 2. During the course of this study, many of the conclusions and recommendations were presented to the design team. ## 1.2 OBJECTIVES AND SCOPE The objectives and scope of our study were planned in discussions among Mr. Wayne Smith of the State of Utah – Division of Facilities Construction and Management (DFCM); Mr. Dave Triplet of Cooper Robert Simonson Architects; and Messrs. Bill Gordon and Bryan Roberts of Gordon Spilker Huber Geotechnical Consultants, Inc. (GSH). Gordon Spilker Huber Geotechnical Consultants, Inc. 4426 South Century Drive, Suite 100 Salt Lake City, Utah 84123 Tel: (801) 685-9190 Fax: (801) 685-2990 www.gshgeotech.com In general, the objectives of this study were to: - 1. Accurately define and evaluate the subsurface soil and groundwater conditions across the site. - 2. Provide appropriate foundation and earthwork, recommendations to be utilized in the design and construction of the proposed addition. In accomplishing these objectives, our scope has included the following: - 1. A field program consisting of the drilling, logging, and sampling of three borings. - 2. A laboratory testing program. - 3. An office program consisting of the correlation of available data, engineering analyses, and the preparation of this summary report. ## 1.3 AUTHORIZATION Authorization was provided by returning a signed copy of our Professional Services Agreement No. 08-0328 and State of Utah Purchase Authorization PO Number 61016. # 1.4 PROFESSIONAL STATEMENTS Supporting data upon which our recommendations are based are presented in subsequent sections of this report. Recommendations presented herein are governed
by the physical properties of the soils encountered in the exploration borings, projected groundwater conditions, and the layout and design data discussed in Section 2., Proposed Construction, of this report. If subsurface conditions other than those described in this report are encountered and/or if design and layout changes are implemented, GSH must be informed so that our recommendations can be reviewed and amended, if necessary. Our professional services have been performed, our findings developed, and our recommendations prepared in accordance with generally accepted engineering principles and practices in this area at this time. # 2. PROPOSED CONSTRUCTION The addition is to consist of two maintenance bays with a rough total plan area of 44 feet by 80 feet at the south end of the existing Vehicle Maintenance Shop. Planned construction is to consist of a one-extended level light steel-frame and metal panel structure. The floor elevation is to match the floor of the existing facility to the north. The structural loads will be transmitted down through bearing walls and columns to supporting foundations. Design loads are not available at this time; however, projected maximum column and wall loads, based on similar projects, will be on the order of 60 to 120 kips and 2 to 5 kips per lineal foot, respectively. Maximum floor slab loads are projected be on the order of 200 pounds per square foot. Design data is unavailable at this time as to whether or not there may be shared loading along the existing building line. Should this be the case and when the data becomes available, GSH must be provided the appropriate data in order to complete our studies. Site development will require very minimal earthwork in the form of cutting and filling. Projected maximum cuts and fills will be one the order of one foot or less. ## 3. SITE INVESTIGATIONS ## 3.1 FIELD PROGRAM In order to define and evaluate the subsurface soil and groundwater conditions at the site, 3 borings were explored to depths ranging from 16.5 to 31.5 feet below existing grade. The borings were drilled using a truck-mounted drill rig equipped with hollow-stem augers. Locations of the borings are presented on Figure 2. The field portion of our study was under the direct control and continual supervision of an experienced member of our geotechnical staff. During the course of the drilling operations, a continuous log of the subsurface conditions encountered was maintained. In addition, samples of the typical soils encountered were obtained for subsequent laboratory testing and examination. The soils were classified in the field based upon visual and textural examination. These classifications have been supplemented by subsequent inspection and testing in our laboratory. Detailed graphical representation of the subsurface conditions encountered is presented on Figures 3A through 3C, Log of Borings. Soils were classified in accordance with the nomenclature described on Figure 4, Unified Soil Classification System. A 3.25-inch outside diameter, 2.42-inch inside diameter drive (Dames & Moore) sampler was utilized in the subsurface sampling at the site. The blow-counts recorded on the boring logs were those required to drive the sampler 12 inches with a 140-pound hammer dropping 30 inches. Following completion of drilling operations, one and one-quarter-inch diameter slotted PVC pipe was installed in each boring in order to provide a means of monitoring the groundwater fluctuations. # 3.2 LABORATORY TESTING #### 3.2.1 General In order to provide data necessary for our engineering analyses, a laboratory testing program was initiated. The program included moisture and density, partial gradation, consolidation, and chemical tests. The following paragraphs describe the tests and summarize the test data. # 3.2.2 Moisture and Density Tests To aid in classifying the soils and to help correlate other test data, moisture and density tests were performed on selected undisturbed samples. The results of these tests are presented on the boring logs, Figures 3A through 3C. # 3.2.3 Partial Gradation Tests To aid in classifying the granular soils, partial gradation tests were performed. Results of the test are tabulated below: | Boring
No. | Depth (feet) | Percent Passing
No. 200 Sieve | Soil
Classification | |---------------|--------------|----------------------------------|------------------------| | B-1 | 10 | 10.0 | SP/SM | | B-1 | 15 | 58.6 | ML/SM | ## 3.2.4 Consolidation Tests To provide data necessary for our settlement analyses, a consolidation test was performed upon each of two representative samples of the fine-grained clay soils encountered in the exploration borings. The results indicate that the clay soils are moderate to highly over-consolidated and will exhibit moderate compressibility characteristics when loaded below the over-consolidation pressure. Detailed results of these tests are maintained within our files and can be transmitted to you, upon your request. ## 3.2.5 Chemical Tests To determine if the site soils will react detrimentally with concrete, chemical tests were performed on a representative sample of the silty clay soils encountered in Boring B-1 at a depth of two and one-half feet below existing grade. The results of the chemical tests are tabulated on the following page. | Boring
No. | Depth
(feet) | pН | Total Water Soluble
Sulfate
(mg/kg-dry) | |---------------|-----------------|-----|---| | B-1 | 2.5 | 8.4 | 54 | ## 4. SITE CONDITIONS ## 4.1 SURFACE The site is located at the south end of the existing OMS, Vehicle Maintenance Shop, on the west side of Airport Road (approximately 7600 South), Airport No. 2, in West Jordan, Utah. Presently, the site is being used as a vehicle wash area with a Portland cement concrete slab and drain located near the middle. The pad is surrounded by asphalt concrete pavement. A single-story "Quans 6"-type storage structure is located to the southeast. The remaining sides are covered with asphalt concrete-paved parking and roadways. The site is relatively flat. ## 4.2 SUBSURFACE SOIL The conditions encountered in each of the borings, to the depths penetrated, were similar. The surface at the boring locations is blanketed by three inches of asphalt concrete over eight inches of granular base. Below the pavement section, silty clay was encountered to depths between seven and one-half and eight feet. Below this clay layer there exists a layer of silty gravel and gravelly sand to depths between 12.5 and 13.5 feet. In Boring B-2, silty sand was encountered from 13.0 feet to the full depth penetrated, 16.5 feet. In Boring B-3, sandy clay was encountered from 12.5 feet to the full depth penetrated, 16.5 feet. In Boring B-1, a layer of sandy silt/silty sand was encountered between 13.5 and 24.0 feet underlain by silty and clayey gravel to the full depth penetrated, 31.5 feet. The clay and silt soils were brown, moist, medium stiff to stiff, moderate to highly over-consolidated, and will exhibit moderate compressibility characteristics when loaded below the over-consolidation pressure. The granular soils are brown, moist, loose to medium dense, and will exhibit moderate to high strength and low compressibility characteristics. # 4.3 GROUNDWATER Groundwater was not encountered in any of the borings at the time of the field work. On April 22, 2007, GSH returned to the site and checked for groundwater within the temporary PVC piezometers placed in each boring to depths of 16.5 and 31.5 feet. Conditions within the piezometers were dry. ## 5. DISCUSSIONS AND RECOMMENDATIONS ## 5.1 SUMMARY OF FINDINGS The results of this study indicate that the proposed addition can be supported upon conventional spread and continuous wall foundations established upon suitable natural soils or properly placed and compacted structural fill extending to suitable natural soils. The on-site natural soils encountered may be re-utilized for site grading fill provided that they meet the requirements for such, as outlined in Section 5.2.3, Structural Fill, of this report. In the following sections, detailed discussions pertaining to earthwork, foundations, lateral resistance and pressures, floor slabs, pavements, and the geoseismic setting of the site are provided. ## 5.2 EARTHWORK ## 5.2.1 Site Preparation Preparation of the site will consist of the removal of the existing concrete slab and surrounding asphalt concrete pavement from the area extending out at least two feet from the perimeter of the proposed addition. Depending on grading requirements, the existing base course may remain in place. The edges of the pavements to be removed should be saw-cut to facilitate new pavement/floor slab replacement jointing. Any existing utilities, including the wash drain, will need to be properly abandoned and/or relocated. Subsequent to the above operations and prior to the placement of footings, structural fill, floor slabs, or pavements, the exposed base course and/or natural subgrade must be proofrolled by running moderate-weight rubber tire-mounted construction equipment uniformly over the surface at least twice. If excessively soft or otherwise unsuitable soils are encountered beneath footings, they must be totally removed. In pavement and floor slab areas, unsuitable soils encountered during recompaction and proofrolling must be removed to a maximum depth of two feet and replaced with compacted granular structural fill. #### 5.2.2 Excavations Groundwater was not encountered to the full depth penetrated, 31.5 feet. Temporary construction excavations in cohesive soil, not exceeding four feet in depth, may be constructed with near-vertical sideslopes. Temporary excavations up to eight feet deep in fine-grained cohesive soils, may be constructed with sideslopes no steeper than one-half horizontal to one vertical. Excavations deeper than eight feet are not anticipated at the site. For granular
(cohesionless) soils, construction excavations above the water table, not exceeding four feet, should be no steeper than one-half horizontal to one vertical. For excavations up to eight feet in granular soils and above the water table, the slopes should be no steeper than one horizontal to one vertical. Excavations encountering saturated cohesionless soils will be very difficult and will require very flat sideslopes and/or shoring and bracing. All excavations must be inspected periodically by qualified personnel. If any signs of instability or excessive sloughing are noted, immediate remedial action must be initiated. #### 5.2.3 Structural Fill Structural fill is defined as all fill which will ultimately be subjected to structural loadings, such as imposed by footings, floor slabs, pavements, etc. Structural fill will be required as backfill over foundations and utilities, as site grading fill, and possibly as replacement fill below footings. All structural fill must be free of sod, rubbish, topsoil, frozen soil, and other deleterious materials. Structural site grading fill is defined as fill placed over relatively large open areas to raise overall grade. Within structural site grading fill, the maximum particle size should generally not exceed four inches or half the thickness of the fill placed; although, occasional larger particles, not exceeding eight inches in diameter, may be incorporated if placed randomly in a manner such that "honeycombing" does not occur and the desired degree of compaction can be achieved. The maximum particle size within structural fill placed in confined areas should generally be restricted to two inches. The on-site fine-grained soils may be utilized as structural site grading fill. However, it should be noted that unless moisture control is maintained near optimum content, utilization of these natural on-site silty clay soils as structural site grading fill will be very difficult, if not impossible, during wet and cold periods of the year. Only granular soils are recommended as structural fill in confined areas, such as around foundations and within utility trenches. Non-structural site grading fill is defined as all fill material not designated as structural fill and may consist of any cohesive or granular soils not containing excessive amounts of degradable material. # 5.2.4 Fill Placement and Compaction All structural fill should be placed in lifts not exceeding eight inches in loose thickness. Fills beneath the area extending out at least 2 feet from the perimeter of the proposed addition must be compacted to at least 95 percent of the maximum dry density as determined by the AASHTO¹ T-180 (ASTM² D-1557) compaction criteria. Structural fills less than 5 feet thick, which are not beneath an area extending out at least 2 feet from the perimeter of the structure, should be compacted to at least 90 percent of the above-defined criteria. Structural fills extending outside 2 feet from the structure which are greater than 5 feet thick must be compacted ² American Society for Testing and Materials American Association of State Highway and Transportation Officials to 95 percent of the above criteria. With the possible exception of utility lines, structural fills greater than five feet thick are not anticipated at the site. Non-structural fill may be placed in lifts not exceeding 12 inches in loose thickness and compacted by passing construction, spreading, or hauling equipment over the surface at least twice. Subsequent to stripping and prior to the placement of structural site grading fill, the subgrade should be prepared as discussed in Section 5.2.1, Site Preparation, of this report. In confined areas, subgrade preparation should consist of the removal of all loose or disturbed soils. # 5.2.5 Utility Trenches All utility trench backfill material below structurally loaded facilities (flatwork, floor slabs, paved areas, etc.) should be placed to the same material and density requirements established for structural fill. If the surface of the backfill becomes disturbed during the course of construction, the backfill should be proofrolled and/or properly compacted prior to the construction of any exterior flatwork over a backfilled trench. Proofrolling may be performed by passing moderately loaded rubber tire-mounted construction equipment uniformly over the surface at least twice. If excessively loose or soft areas are encountered during proofrolling, they should be removed to a maximum depth of two feet below design finish grade and replaced with structural fill. Most utility companies and City-County governments are now requiring that Type A-1a or A-1b (AASHTO Designation – basically granular soils with limited fines) soils be used as backfill over utilities. These organizations are also requiring that in public roadways, the backfill over major utilities be compacted over the full depth of fill to at least 96 percent of the maximum dry density as determined by the AASHTO T-180 (ASTM D-1557) method of compaction. We recommend that as the major utilities continue onto the site that these compaction specifications are followed. The on-site granular soils encountered at depth are suitable as utility backfill provided that they meet the requirements for structural fill discussed in Section 5.2.3, Structural Fill, of this report. However, the on-site fine-grained cohesive soils are not recommended for use as trench backfill. # 5.3 SPREAD AND CONTINUOUS WALL FOUNDATIONS ## 5.3.1 Design Data The proposed addition may be supported upon conventional spread and continuous wall foundations. Foundations may bear on the undisturbed, suitable natural soils or on compacted granular structural fill extending down to suitable natural soils. For design, the following parameters are provided: | Minimum Recommended Depth of Embedment for Frost Protection | - 30 inches | |--|-----------------------------------| | Minimum Recommended Depth of Embedment for
Non-frost Conditions | - 15 inches | | Recommended Minimum Width for Continuous Wall Footings | - 18 inches | | Minimum Recommended Width for Isolated Spread Footings | - 24 inches | | Recommended Net Bearing Pressure for Real
Load Conditions | - 2,500 pounds
per square foot | | Bearing Pressure Increase for Seismic Loading | - 50 percent | The term "net bearing pressure" refers to the pressure imposed by the portion of the structure located above lowest adjacent final grade. Therefore, the weight of the footing and backfill to lowest adjacent final grade need not be considered. Real loads are defined as the total of all dead plus frequently applied live loads. Total load includes all dead and live loads, including seismic and wind. ## 5.3.2 Installation Under no circumstances should the footings be established upon soft, loose or disturbed soils, non-engineered fills, sod, rubbish, frozen soils, debris, or within ponded water. If the natural soils upon which the footings are to be established become loose or disturbed, they must be recompacted to the requirements for structural fill or replaced with granular structural fill prior to placing forms and/or reinforcing. If granular structural fills below footings become disturbed, they should be recompacted to the requirements for structural fill. The width of replacement fill below footings should be equal to the width of the footing plus one additional foot for each foot of fill thickness placed. For example, if the width of the footing is two feet and the thickness of the structural fill beneath the footing is one foot, the width of the structural fill at the base of the footing excavation would be a total of three feet. We recommend that footing excavations be completed with a smooth-lip bucket to reduce disturbance of the bearing subgrade soils. Design data is unavailable at this time as to whether or not there may be shared loading along the existing building line. Should this be the case and when the data becomes available, GSH must be provided the appropriate data in order to complete our studies. ## 5.3.3 Settlements Maximum settlements of new foundations designed and installed in accordance with recommendations presented herein and supporting maximum anticipated loads as discussed in Section 2., Proposed Construction, are anticipated to be on the order of one-quarter to five-eighths of an inch. Approximately 60 percent of the quoted settlement should occur during construction. # 5.4 LATERAL RESISTANCE Lateral loads imposed upon foundations due to wind or seismic forces may be resisted by the development of passive earth pressures and friction between the base of the footings and the supporting soils. In determining frictional resistance, a coefficient of 0.40 should be utilized. Passive resistance provided by properly placed and compacted granular structural fill above the water table may be considered equivalent to a fluid with a density of 300 pounds per cubic foot. Below the water table, this granular soil should be considered equivalent to a fluid with a density of 150 pounds per cubic foot. A combination of passive earth resistance and friction may be utilized provided that the friction component of the total is divided by 1.5. # 5.5 LATERAL PRESSURES The lateral pressure parameters, as presented within this section, assume that the backfill will consist of a drained granular soil placed and compacted in accordance with the recommendations presented herein. The lateral pressures imposed upon subgrade facilities will, therefore, be basically dependent upon the relative rigidity and movement of the backfilled structure. For active walls, such as retaining walls which can move outward (away from the backfill), granular backfill may be considered equivalent to a fluid with a density of 35 pounds per cubic foot in computing lateral pressures. For more rigid walls, generally not exceeding eight feet in height granular
backfill, may be considered equivalent to a fluid with a density of 45 pounds per cubic foot. The above values assume that the surface of the soils slope behind the wall is horizontal, that the granular fill within three feet of the wall be compacted with hand-operated compactor equipment. For seismic loading, a uniform pressure of 50 pounds per square foot should be added. ## 5.6 FLOOR SLABS Floor slabs may be established upon suitable undisturbed natural soils, or upon structural fill extending to suitable natural soils. To facilitate construction, proper curing, and provide a capillary break, it is recommended that floor slabs be directly underlain by at least four inches of "free-draining" fill, such as "pea" gravel or three-quarters- to one-inch minus clean gap-graded gravel. Settlements of lightly to moderately loaded floor slabs are anticipated to be minor. ## 5.7 CEMENT TYPES Laboratory tests indicate that the site soils contain near negligible amounts of water soluble sulfates. Therefore, all concrete which will be in contact with the site soils may be prepared using Type I or IA cement. ## 5.8 PAVEMENTS The existing pavement is in fair condition. For patching asphalt concrete areas that may have been damaged or cut out during construction, we recommend a pavement section comprised of three inches of asphalt concrete over eight inches of compacted base course. For dumpster pads and bay entrance aprons, we recommend a rigid pavement section consisting of six and one-half inches of Portland cement concrete, four inches of aggregate base course, over properly prepared natural subgrade or site grading structural fills. The above rigid pavement sections are for non-reinforced Portland cement concrete. Construction of the rigid pavement should be in sections 10 to 12 feet in width with construction or expansion joints or one-quarter depth saw-cuts on no more than 12-foot centers. Saw-cuts must be completed within 24 hours of the "initial set" of the concrete and should be performed under the direction of the concrete paving contractor. The concrete should have a minimum 28-day unconfined compressive strength of 4,000 pounds per square inch and contain 6 percent ±1 percent air-entrainment. # 5.9 GEOSEISMIC SETTING #### 5.9.1 General Utah municipalities adopted the International Building Code (IBC) 2006 on January 1, 2007. The IBC 2006 code determines the seismic hazard for a site based upon 2002 mapping of bedrock accelerations prepared by the United States Geologic Survey (USGS) and the soil site class. The USGS values are presented on maps incorporated into the IBC code and are also available based on latitude and longitude coordinates (grid points). The structure must be designed in accordance with the procedure presented in Section 1613, Earthquake Loads, of the IBC 2006 edition. ## 5.9.2 Faulting Based upon our review of available literature, no active faults are known to pass through or immediately adjacent to the site. The site is located outside fault investigation zones identified by Salt Lake County. The nearest active fault is the Granger Fault approximately six miles to the northeast of the site. The Wasatch fault zone is considered capable of generating earthquakes as large as magnitude 7.3³. #### 5.9.3 Soil Class For dynamic structural analysis, the Site Class D - Stiff Soil Profile as defined in Table 1613.5.2, Site Class Definitions, of the IBC 2006 can be utilized. #### 5.9.4 Ground Motions The IBC 2006 code is based on 2002 USGS (United States Geologic Survey) mapping, which provides values of short and long period accelerations for the Site Class B-C boundary for the Maximum Considered Earthquake (MCE). This Site Class B-C boundary represents a hypothetical bedrock surface and must be corrected for local soil conditions. The following table summarizes the peak ground and short and long period accelerations for a MCE event and incorporates a soil amplification factor for a Site Class D soil profile in the second column. Based on the site latitude and longitude (40.6119 degrees north and 111.9997 degrees west, respectively), the values for this site are tabulated below: | Spectral Acceleration Value, T
Seconds | Site Class B-C
Boundary
[mapped values]
(% g) | Site Class D [adjusted for site class effects] (% g) | |---|--|--| | Peak Ground Acceleration | 45.4 | 47.5 | | 0.2 Seconds, (Short Period
Acceleration) | S _S =113.4 | S _{MS} = 118.6 | | 1.0 Seconds (Long Period
Acceleration) | $S_1 = 43.0$ | $S_{M1} = 67.5$ | The IBC 2006 code design accelerations (S_{DS} and S_{D1}) are based on multiplying the above accelerations (adjusted for site class effects) for the MCE event by two-thirds ($\frac{2}{3}$). Arabasz, W.J., Pechmann, J.C., and Brown, E.D., 1992, Observational seismology and the evaluation of earthquake hazards and risk in the Wasatch Front area, Utah, in Gori, P.L., and Hays, W.W., eds., Assessment of regional earthquake hazards and risk along the Wasatch Front, Utah: U.S. Geological Survey Professional Paper 1500-D, 36 p. ## 5.9.5 Liquefaction The site is located in an area that has been identified by Salt Lake County as having "very low" liquefaction potential. Liquefaction is defined as the condition when saturated, loose, granular soils lose their support capabilities because of excessive pore water pressure which develops during a seismic event. Clayey soils, even if saturated, will not liquefy during a major seismic event. Loose to medium dense sands and gravels were encountered at the site from 7.5 feet to the maximum depth penetrated of 31.5 feet below the surface. However, these soils were not saturated. Based on the conditions encountered within the borings during this study, the potential for liquefaction appears to be very low. We appreciate the opportunity of providing this service for you. If you have any questions or require additional information, please do not hesitate to contact us. Respectfully submitted, Bryan M. Roberts GSH Geotechnical Consultants, Inc. Bryan N. Roberts, State of Utah No. 276476 Professional Engineer Reviewed by: William J. Gordon, State of Utah No. 146417 Professional Engineer BNR/WJG:jlh Encl. Figure 1, Vicinity Map Figure 2, Site Plan Figures 3A through 3C, Log of Borings Figure 4, Unified Soil Classification System Addressee (3) c: Mr. Dave Triplet (1 + email) Cooper Robert Simonson Architects 700 North 200 West Salt Lake City, Utah 84103 1000 SCALE IN FEET 1000 REFERENCE: USGS 7.5 MINUTE TOPOGRAPHIC QUADRANGLE MAPS TITLED "MIDVALE, UTAH," "COPPERTON, UTAH," "MAGNA, UTAH" "SALT LAKE CITY SOUTH, UTAH" ALL DATED 1999 2000 FIGURE 1 VICINITY MAP Gordon Spilker Huber Geotechnical Consultants, Inc. Gordon Spilker Huber Geotechnical Consultants, Inc. REFERENCE: ADAPTED FROM AERIAL PHOTOGRAPH BY GOOGLE EARTH, DATED 2008 NOT TO SCALE Page: 1 of 2 | Project Name: Prop Add to OMS Vehicle Maintenance Shop | Project No.: 0128-022-08 | |---|---| | Location: Airport Rd at Aprx 7600 S Airport #2, West Jordan, UT | Client: State of Utah - DFCM | | Drilling Method: 3-3/4" ID Hollow-Stem Auger | Date Drilled: 04-10-08 | | Elevation: Overall Site Approximately 4650' +/- | Water Level: No groundwater encountered (04-14-08 & 04-22-08) | | Remarks: | | Gordon Spilker Huber Geotechnical Consultants, Inc. Salt Lake City, Utah 84123 Page: 2 of 2 | Project Name: Prop Add to OMS Vehicle Maintenance Shop | Project No.: 0128-022-08 | |---|---| | Location: Airport Rd at Aprx 7600 S Airport #2, West Jordan, UT | Client: State of Utah - DFCM | | Drilling Method: 3-3/4" ID Hollow-Stem Auger | Date Drilled: 04-10-08 | | Elevation: Overall Site Approximately 4650' +/- | Water Level: No groundwater encountered (04-14-08 & 04-22-08) | | D1 | | | DESCRIPTION LILLAGE OF DUSAY A 26 | | 11 K.S | | | | | | | | | | |
---|------------|--------|--|-----------|----------|---------------|--------------|---------------|-------------------|------------------|-------------------|---------| | CLAYEY GRAVEL with some sand; brown (GC) Stopped drilling at 30.0°. Stopped sampling at 31.5°. Installed 1-1/4" diameter slotted PVC pipe to 30.0°. No groundwater encountered. | | 1 ' | DESCRIPTION | DEPTH FT. | BLOWS/FT | SAMPLE SYMBOL | MOISTURE (%) | % PASSING 200 | DRY DENSITY (PCF) | Liquid Limit (%) | Plastic Limit (%) | REMARKS | | CLAYEY GRAYEL with some sand; brown (GC) Stopped drilling at 30.0'. Stopped sampling at 31.5'. Installed 1-1/4" diameter slotted PVC pipe to 30.0'. No groundwater encountered. -40 -45 | 920
000 | | SANDY GRAVEL with some silt; fine to coarse sand; fine and coarse gravel; oxidized; brown (GP) | | 67 | X | | | | | | | | Stopped drilling at 30.0°. Stopped sampling at 31.5°. Installed 1-1/4" diameter slotted PVC pipe to 30.0°. No groundwater encountered. -40 -45 -45 | | | CLAYEY GRAVEL | -30 | | | | | | | | | | Stopped sampling at 31.5'. Installed I-1/4" diameter slotted PVC pipe to 30.0'. No groundwater encountered. | | | | | 73 | X | | | | | | | | No groundwater encountered. -35 -40 -45 -45 -45 -45 -45 -45 -45 -45 -45 -45 | | | | - | | | | | | | | | | No groundwater encountered. | | | | -35 | | | | | | | | | | - | | | No groundwater encountered. | _ | | | | | | | | | | - | | | | | | | | | | | | | | - | | | | - | | | | | | | | | | | | | | 40 | | | | | | | | | | | | | | - | | | | | | | | | | | | | | - | | | | | | | | | | 50 | | | | -45 | | | | | | | | | | 50 | | | | | | 1 | | | | | | | | -50 | | | | - | | | | | | | | | | | | | | -50 | | | | | | | | | # Gordon Spilker Huber Geotechnical Consultants, Inc. Salt Lake City, Utah 84123 Page: 1 of 1 | Project Name: Prop Add to OMS Vehicle Maintenance Shop | Project No.: 0128-022-08 | |---|---| | Location: Airport Rd at Aprx 7600 S Airport #2, West Jordan, UT | Client: State of Utah - DFCM | | Drilling Method: 3-3/4" ID Hollow-Stem Auger | Date Drilled: 04-10-08 | | Elevation: Overall Site Approximately 4650' +/- | Water Level: No groundwater encountered (04-14-08 & 04-22-08) | | D1 | | Page: 1 of 1 | Project Name: Prop Add to OMS Vehicle Maintenance Shop | Project No.: 0128-022-08 | |---|---| | Location: Airport Rd at Aprx 7600 S Airport #2, West Jordan, UT | Client: State of Utah - DFCM | | Drilling Method: 3-3/4" ID Hollow-Stem Auger | Date Drilled: 04-10-08 | | Elevation: Overall Site Approximately 4650' +/- | Water Level: No groundwater encountered (04-14-08 & 04-22-08) | | Remarks: | | | | II KS | | | | | _ | | | | | | |---------------|-------------|---|--------------------|----------|---------------|--------------|---------------|----------------------|------------------|-------------------|-----------------------| | Graphical Log | Water Level | DESCRIPTION | DEPTH FT. | BLOWS/FT | SAMPLE SYMBOL | MOISTURE (%) | % PASSING 200 | DRY DENSITY
(PCF) | Liquid Limit (%) | Plastic Limit (%) | REMARKS | | | | Ground Surface | 10 | | | | | | | | | | | | 3" ASPHALT CONCRETE | 1 " | | | | | : | | | | | 7777 | | 8" ROADBASE, FILL | 1 | | | | | | | | moist | | | | SILTY CLAY with some sand; minor pinholes; brown with oxidation mottling (CL) | - | <u></u> | | | | | | | stiff | | | | | - | 13 | Å | 22.9 | | 94 | | | | | | | | <u>_</u> 5 | | | | | | | ., | very stiff | | | | grades sandy clay | | 30 | X | | | | | | very still | | | | | - | | | | | | | | | | | | SILTY GRAVEL with some sand and trace clay; brown (GM) | - | | | | | | | | moist
medium dense | | | | | -10 | | | | | | | | | | | | | - | 38 | X | | | | | | | | | | SANDY CLAY
fine to medoum sand; brown (CL) | <u>-</u>
-
- | | | | | | | | very moist
stiff | | | | | 15 | | | | | | | | moist | | | | | - | 16 | X | | | | | | loose | | | | Stopped drilling at 15.0'. | F | | | : | | | | | | | | | Stopped sampling at 16.5'. | - | | | | | | | | | | | | Installed 1-1/4" diameter slotted PVC pipe to 15.0'. | - | | | | | | | | | | | | No groundwater encountered at time of drilling. | -20 | | | | | | | | | | | | | - | | | | | | | | | | | | | - | | | | | | | | | | | | ssion in the text under the section titled, SUBSURFACE CON | -25 | NS | | | | | | | FIGURE 3C | | | | UNI | FIED SOIL | CLASSIFIC | ATION SY | STEM | | | |--|---|--|--|---|---|------|---|--| | FIELD IDENTIFICATION PROCEDURES SYM | | | | | | | LETTER
SYMBOL | TYPICAL DESCRIPTIONS | | | GRAVELS | CLEAN
GRAVELS | Wide range in gral | in size and substaniia
Narmediate particis si | i
izes | 0,00 | GW | Well graded gravels, gravel-sand mixtures.
Huse or no lines. | | COARSE GRAINED | More than half of
coarse traction is
larger than No. 4 | (Lhite or
no lines) | Precominantly on
with some intere | e size or a renge of siz
golzelm estla slatbem | zes | 0.0 | GP | Poorly graded gravers, graver-send mixtures, little or no lines. | | SOLS
More than half of | sieve stze. | GRAVELS WITH | Non-plastic fines (
see ML below). | (for Identification proc | edires | | GM | Saty gravels, poorly granted gravel-sand-
sin mixtures. | | material is lar <u>ger</u>
than No. 206
sieve stze. 1 | (For visual classifications,
ine 1/4" size may be
used as equivalent to
the No. 4 since size.; | FINES
(Appreciable
amount of
tines) | Plastic fines (for li
see CL below). | dentification procedur | res | 22 | GC | Clavey gravels, poorly graded grave-eant-
clay muxlims. | | | SANDS | CLEANSANDS | Wide range in gra
aniounts of all li | in sizes and aubstanli
intermediate particle s | isi
Izes. | | sw | Well graded eands, gravely eands, little or
no fines. | | | More (non hell of
course traction is
smaller than No. 4 | (Little or
no fines) | Predominantly on
some letermedi | 265 Willi | | SP | Poorly graded sands, gravelly sands, little or
no lines. | | | (The No. 200 steve
size is about the
smallest particle | sieve size. | SANDS WITH
FINES | Horeplastic fines
see IAL below). | :eunet | | SM | Silty sends, poorly graded send-silt mixtures. | | | visible to the
naked aye; | (For visual classifications,
the 144" size may be
used as equivalent to
the No. 4 slave size.) | (Appreciable
amount of | Plastic fines (for IdentHication procedures
590 Ct. below). | | | | sc | Clayey santis, poorly graded satid-clay mixtures. | | | IDENTIFICATION F | HOCEDIRES ON F | HACTION SMALLER T | HAN No. 40 SIEVE SI | ZF | I | l l | | | | | | DOV SYREMSTH
(CAUSHURI
CHARACTERS/EES. | ERLATARET
EREACTION
TO HILLARINGS | TOUGHNESS
(CONSISTENCY
KEAS PLASTIC LINE) | | | | | FINE GRAINED
SOILS | SILTS AND C | SILTS AND CLAYS | | Quick to slow | Nane | | ML | inorganic slits and very fine sands, rock flout,
silty or clayey fine sand with stignt planticity. | | More then balf of
material is smaller | Liquid fimit less that | n 50 | Medium to high | None to
very staw | Medium | | CL | Inorganic clays of low to medium
plasticity.
gravelity clays, sandy clays, sitry clays, tean clays. | | than No. 200
sieva size. | | | | Slow | Silghi | | OL | Organic silts and organic silt-clays of low plasticity. | | | | | Slight le
medium | Slow to none | Slight to
medium | | МН | inorganiz ellis, niteaceous or distomaceous line
ennny or elliy solis, elastic allis. | | (The No. 260 sleve
size is about the
smallmst particle | SILTS AND C | | High to
very high | None | High | | СН | inorganic clays of high planticity, for clays. | | visible to ibé
nakeu eye) | Establisher Manuel Com | Liquist limit greater than 50 | | Hone to
yety slow | Silghi to
medium | | ОН | Organic clays of medium to high plesticity. | | | SHLY ORGANIC SOILS | | irequently by l | | | | Pt | Past and other highly organic soils. | In general, Unitied Soil Classification Designations presented on the logs were evaluated by visual methods only. There rore, actual designations (based on laboratory testing) may differ. 2. Lines seperating strata on the logs represent approximate boundaries only Actual transitions may be gradual. 3. Logs represent general soil conditions observed at ich point of exploration onthe date indicated. 4. No warranty is provided as to the continuity of soil conditions between individual sample locations. | | | POCKET | |-----------|---------|--------------| | INED SOIL | TORVANE | PENETROMETER | | FINE - GHAMED SUIL | | TOUR WARE PENETHOMETER | | | | |--------------------|-------------------|--------------------------------------|---|---|--| | CONSISTENCY | SPT
(blows/ft) | UNDRAINED
SHEAR
STRENGTH (Ist) | UNCONFINED
COMPRESSIVE
STRENGTH (Isl) | FIELD TEST | | | Very Soft | <2 | <0.125 | <0.25 | Easily penetrated several inches by Thumb.
Squeezes through fingers. | | | Sofi | 2 - 4 | 0.125 - 0.25 | 0.25 - 0.5 | Easily penetrated 1 " by Thumb . Molded by light finger pressure. | | | Medjum Stiff | 4 - 8 | 0.25 - 0.5 | 0.5 - 1.0 | Penetrated over 1/2 " by Thumb with moerate effort. Molded by strong finger pressure. | | | Silff | 8 - 15 | 0.5 - 1.0 | 1.0 - 2.0 | Indented about 1/2" by Thumb but penetrated
only with great effort | | | Very Stiff | 15 - 30 | 1.0 - 2.0 | 2,0 - 4,0 | Readily indented by Thumbnail | | | | . 00 | -20 | -4.0 | Indented with difficulty by Thumbnall | | LOG KEY SYMBOLS COARSE -GRAINDE SOIL | APPERENT
DENSITY | SPT
(blows/b) | DENSITY
(%) | FIELD TEST | |---------------------|------------------|----------------|--| | Very Loose | <4 | 0 - 15 | Easily penetrated with 1/2 " reinforcing rod pushed by hand | | Loose | 4 - 10 | 15 - 35 | Difficult to penetrated with 1/2 " reinforcing
rod pushed by hand | | Medium Dense | 10 - 30 | 35 - 65 | Easily penetrated a loot with 1/2 "
reinforcing rod driven with 5-1b hammer | | Dense | 30 - 50 | 65 - 85 | Difficult to penetrated a foot with 1/2 "
reinforcing rod driven with 5-fb hammer | | Very Dense | >50 | 85 - 100 | Penetrated only a few inches with 1/2"
reinforcing rod driven with 5-lb hammer | STRATIFICATION DESCRIPTION THICKNESS | SEAM | 1/16 - 1/2 " | |-------------|---------------------------------------| | LAYER | 1/2 - 12 " | | DESCRIPTION | THICKNESS | | Occasional | One or less per
tool of thickness | | Frequent | More than on per
tool of thichness | CEMENTATION DESCRIPTION Weakely Crumbles or breaks with handling of alight finger pressure Moderately Crumbles or breaks with considerable finger pressure Strongly Will not crumbles or breaks with finger pressure | DESCRIPTION | % | Trace | <5 | Some | 5 - 12 | With | > 12 | MOISTURE CONTENT DESCRIPTION FIELD TEST Dry Absence of moisture, dusty, dry to the touch Moist Damp but no visible water Wet Visible water, usually soll below Water Table FIGURE 4